We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The blooming era of precision astrometry for Galactic studies truly brings the rich internal dynamics of globular clusters to the centre stage. But several aspects of our current understanding of fundamental collisional stellar dynamics cannot match such new-generation data and the theoretical ambitions they trigger. This rapidly evolving context offers the stimulus to address a number of old and new questions concerning the phase space properties of this class of stellar systems.
I review the methods, mostly developed in the last decade, that are commonly used to identify and characterize multiple populations (MPs) in Globular Clusters (GCs) based on photometry. I summarize the results from the recent surveys of MPs with the Hubble Space Telescope (HST) and ground-based facilities and provide a list of the main properties of MPs as inferred from these studies.
The Asymptotic Giant Branch (AGB) scenario for the formation of multiple populations has been quantitatively studied in the course of the last twenty years, examining the aspects both of nucleosynthesis and of the dynamics of formation of new stars in a cooling flow at the center of the first generation cluster, and of the following N–body evolution. The large complexity of these studies finds many validations in the properties of multiple populations. Here I shortly summarize recent accomplishments in the study of the evolution of massive AGBs and super–AGBs including the explanation of anomalous high lithium abundances in ‘extreme’ second generation stars in ω Cen and NGC 2808.
We have performed photometric analysis of four Galactic globular clusters (GGCs): NGC 4147, NGC 4590, NGC 5053 and NGC 7492 using far-UV and near-UV filters of the Ultraviolet Imaging Telescope (UVIT) on-board AstroSat. With the help of color-magnitude diagrams (CMDs), we have identified ~150 blue horizontal branch stars (BHBs), and ~40 blue straggler stars (BSS) in the four GGCs. We study the temperature and radial distribution of BHBs and BSS for the four GGCs.
In the context of the STRucture and Evolution of the GAlaxy survey, we describe the preliminary results obtained for the fields around the globular cluster Pal 3 (about 2.75 square degrees), by exploiting the obtained g, r, i time series photometry. The final aim is to use variable stars as tools to verify and study the presence of streams around Pal 3. We found 20 candidate variable stars of which 7 RR Lyrae stars possibly belonging to Pal 3, also at large distance from the center. The distribution of the candidate RR Lyrae seems to confirm a preferential distribution in the north-east direction, confirming previous results in literature.
Recent observations of globular clusters imposed major revisions to the previous paradigm, in which they were considered to be isotropic in velocity space and non-rotating. However, the theory of collisionless spheroids with some kinematic richness has seldom been studied. We present here a first step in this direction, owing to new results regarding the linear stability of rotating Plummer spheres, with varying anisotropy in velocity space and total amount of angular momentum. We extend the well-known radial orbit instability to rotating systems, and discover a new regime of instability in fast rotating, tangentially anisotropic systems.
We review spectroscopic results concerning multiple stellar populations in globular clusters. The cluster initial mass is the most important parameter determining the fraction of second generation stars. The threshold for the onset of the multiple population phenomenon is 1–3×105 M⊙. Nucleosynthesis is influenced by metallicity: Na/O and Mg/Al anti-correlations are more extended in metal-poor than in metal-rich clusters. Massive clusters are more complex systems than the smaller ones, with several populations characterized by different chemical compositions. The high Li abundance observed in the intermediate second generation stars strongly favours intermediate mass AGB stars as polluters for this class of stars; however, it is well possible that the polluters of extreme second generation stars, that often do not have measurable Li, may be fast rotating massive stars or super-massive stars. The mass budget factor should be a function of the cluster mass, and needs to be large only in massive clusters.
Young star clusters are a promising environment for forming binary black holes. Such binaries may form dynamically or via binary star evolution or through the interplay of these two channels. To study these formation pathways, we have performed high precision direct N-body simulations of low-mass (M < 1000 M⊙) young star clusters. The simulations were carried out with the code Nbody6++GPU coupled with the population synthesis code MOBSE. Our results highlight the importance of dynamics to form massive black hole binaries even in low-mass young star clusters.
Over the last decade, our abilities to observe the internal kinematics of star clusters have drastically increased. Where a few years back only small numbers of bright stars with radial velocity measurements were available, we can nowadays study the three-dimensional motions of large stellar samples, thanks to the combined datasets gathered by state-of-art spectrographs and astrometric satellites. In this work, I summarise the contribution of integral-field spectrographs, in particular MUSE, to this paradigm change. Using dedicated software tools, we were able to overcome a fundamental limitation of spectroscopy and advance to the crowded cluster centres. This allowed us to study the central kinematics in unprecedented detail and to start uncovering the populations of black holes that reside in massive star clusters.
We present some preliminary results of our ongoing project about planetary systems around S-stars in the vicinity of Sgr A* black hole. Since S-stars might have migrated in the Galactic Centre (GC) from elsewhere, they probably still keep their planetary systems throughout their voyage. In this work, we study the destiny of their putative planetary systems after close interaction with the central black hole of our galaxy.
We investigate the old open cluster M67 using ultraviolet photometric data of Ultra-Violet Imaging Telescope in multi-filter far-UV bands. M67, well known for the presence of several blue straggler stars (BSS), has been put to detailed tests to understand their formation pathways. Currently, there are three accepted formation channels: mass transfer due to Roche-lobe overflow in binary systems, stellar mergers either due to dynamical collisions or through coalescence of close binaries. So far, there had not been any confirmed detection of a white dwarf (WD) companion to any of the BSSs in this cluster. Here, we present the detection of WD companions to 5 bright BSSs in M67. The multiwavelength spectral energy distributions covering 0.12 -11.5 μm range, were found to require binary spectral fits for 5 BSSs, consisting of a cool (BSS) and a hot companion. The parameters (Luminosity, Temperature, Radius and Mass) of the hot companions suggest them to be WDs with mass in the range 0.2 - 0.35 M⊙ with Teff ~11000 –24000 K.
In order to investigate the origin of multiple populations in globular clusters (GCs), we have constructed new chemical evolution models for proto-GCs where the supernova blast waves undergo blowout without expelling the ambient gas. Chemical enrichments in our models are then dictated by the winds of massive stars together with the asymptotic-giant-branch stars ejecta. We find that the observed Na-O anti-correlation can be reproduced when multiple episodes of starburst and enrichment are allowed to continue in proto-GCs. The “mass budget problem” is mostly resolved by our models without ad-hoc assumptions on star formation efficiency, initial mass function, and significant loss of first-generation stars. Interestingly, ages and chemical abundances predicted by this chemical evolution model are in good agreements with those independently obtained from our stellar evolution model for the horizontal-branch. We also discuss observational evidence for the GC-like multiple populations in the Milky Way bulge.
Gravitational wave direct detections suggest that 30 M⊙ binary black holes (BBHs) commonly exist in the universe. One possible formation scenario of such BBHs is dynamical three-body encounters in dense star clusters. We performed a series of direct N-body simulations with a mass of 2500 and 10000 M⊙ and found a new channel for the formation of BBHs which is dominant in open clusters. In open clusters, the core-collapse time is shorter than in globular clusters, and therefore massive main-sequence (MS) binaries can form before they evolve to BHs. These MS binaries experience common envelope evolution and evolve to hard BBHs, which can merge within the Hubble time. The number of BBH mergers per unit mass obtained from our simulations reached 20–50 % of that for globular clusters, assuming an initial cluster mass function. Thus, open clusters can be a dominant formation site of hard BBHs.
High resolution spectra of stars in the ≈200 Myr LMC globular cluster, NGC 1866, reveal rapidly rotating stars with variable H α emission and absorption, and signatures of outflowing material. The variable H α line can substantially affect photometric measurements obtained with HST/WFC3 narrow-band filters.
. We present a significantly improved version of our numerical code JASMINE, that can now solve the Jeans equations for axisymmetric models of stellar systems, composed of an arbitrary number of stellar populations, a Dark Matter halo, and a central Black Hole. The stellar components can have different structural (density profile, flattening, mass, scale length), dynamical (rotational support, velocity dispersion anisotropy), and population (age, metallicity, Initial Mass Function, mass-to-light ratio) properties. These models, when combined with observations, will allow to investigate important issues, such as quantifying the systematic effects of IMF variations, of mass-to-light ratio gradients, and of different stellar kinematic components (e.g. counter rotating disks, kinematically decoupled cores) on luminosity-weighted properties. The developed analytical and numerical framework aims at modeling Early-Type Galaxies, but it can also be applied to dwarf Spheroidal galaxies and Globular Clusters.
We recently discovered that NGC 3201 has characteristics that set it outside the current twofold classification scheme for Galactic globular clusters (GCs). Most GCs are mono-metallic and show light-element abundance variations (e.g., Na-O and C-N anti-correlations); but a minority of clusters also present variations in Fe correlating with s-process element and C+N+O abundances, and they possess multiple C-N sequences. These anomalous GCs also have a broad sub-giant branch (SGB) and follow the same mass-size relation as dwarf galaxies possibly evolving into GCs. We now revealed that NGC 3201 belongs to neither group. It has multiple C-N sequences, but no broad SGB, no strong evidence of a Fe-spread, and it does not follow the mass-size relation.
Stars in globular clusters lose mass through slow stellar winds that are retained by the stellar cluster and should contribute to build up a non-negligible intracluster medium over time. However, all the observations so far found only a negligible amount of gas in GCs. We propose here to test different mechanisms such as ram-pressure stripping by the motion of the GC in the Galactic halo medium and the inclusion of ionising sources to explain the lack of gas in GCs. We use full 3D hydrodynamical simulations taking into account stellar winds, ionising radiation, radiative heating and radiative pressure. We find that the combined effect of ram-pressure and ionisation are able to explain the negligible amount of gas observed in the core of intermediate-mass and massive GCs.
Over a hundred millisecond radio pulsars (MSPs) have been observed in globular clusters (GCs), motivating theoretical studies of the formation and evolution of these sources through stellar evolution coupled to stellar dynamics. Here we study MSPs in GCs using realistic N-body simulations with our Cluster Monte Carlo code. We show that neutron stars (NSs) formed in electron-capture supernovae can be spun up through mass transfer to form MSPs. Both NS formation and spin-up through accretion are greatly enhanced through dynamical interaction processes. We find that our models for average GCs at the present day with masses ≍ 2 × 105M⊙ can produce up to 10 – 20 MSPs, while a very massive GC model with mass ≍ 106M⊙ can produce close to 100. We show that the number of MSPs is anti-correlated with the total number of stellar-mass black holes (BHs) retained in the host cluster. As a result, the number of MSPs in a GC could be used to place constraints on its BH population. Some intrinsic properties of MSP systems in our models (such as the magnetic fields and spin periods) are in good overall agreement with observations.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC 0104 (47 Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC 0288, NGC 5904 (M 5), NGC 6121 (M 4), NGC 6752, NGC 6838 (M 71) and further explore NGC 0104. Among the analyzed clusters only NGC 0104 and NGC 5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC 5904 exhibit different rotation curves.