Historical review
1913
A. Dumansky proposed the use of ultracentrifugation to determine the dimensions of colloidal particles.
1923
T. Svedberg and J. B. Nichols constructed the first centrifuge with an optical system to follow particle behaviour in a centrifugal field. One year later, Svedberg noted the decrease in absorbance at the top of the cell during centrifugation of a haemoglobin solution.
1926
Svedberg made the first measurements of protein molecular weights (haemoglobin and ovalbumin) by sedimentation equilibrium and in 1927 he determined the molecular weight of haemoglobin using a combination of sedimentation and diffusion data. These pioneering studies led to the undeniable conclusion that proteins are truly macromolecules, made up of a large number of atoms linked by covalent bonds (Comment D4.1).
(Comment D4.1)
It is interesting to note that Theodor Svedberg was awarded the Nobel prize for his work on colloidal systems and not for inventing the analytical centrifuge.
1929
O. Lamm deduced a general equation describing the behaviour of the moving boundary in the ultracentrifuge field. The exact solution of the equation is an infinite series of integrals, which can be computed only by numerical integration. In later work, the Lamm equation was solved analytically for specific limiting cases (H. Faxen, W. J. Archibald, H. Fujita).
1930s
Schlieren optical systems were designed by J. St. L. Philpot and H. Svenson, and independently by L. G. Longsworth; these allowed a representation of the concentration gradient (or, more precisely, the refractive index increment) as a function of distance in the centrifuge sample cell.