Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T03:34:26.814Z Has data issue: false hasContentIssue false

3 - The cytoskeleton as a soft glassy material

Published online by Cambridge University Press:  10 November 2009

Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

ABSTRACT: Using a novel method that was both quantitative and reproducible, Francis Crick and Arthur Hughes (Crick and Hughes, 1950) were the first to measure the mechanical properties inside single, living cells. They concluded their groundbreaking work with the words: “If we were compelled to suggest a model (of cell mechanics) we would propose Mother's Work Basket – a jumble of beads and buttons of all shapes and sizes, with pins and threads for good measure, all jostling about and held together by colloidal forces.”

Thanks to advances in biochemistry and biophysics, we can now name and to a large degree characterize many of the beads and buttons, pins, and threads. These are the scores of cytoskeletal proteins, motor proteins, and their regulatory molecules. But the traditional reductionist approach – to study one molecule at a time in isolation – has so far not led to a comprehensive understanding of how cells are able to perform such exceptionally complex mechanical feats as division, locomotion, contraction, spreading, or remodeling. The question then arises, even if all of the cytoskeletal and signaling molecules were known and fully characterized, would this information be sufficient to understand how the cell orchestrates complex and highly specific mechanical functions? Or put another way, do molecular events playing out at the nanometer scale necessarily add up in a straightforward manner to account for mechanical events at the micrometer scale?

We argue here that the answer to these questions may be ‘No.’ We present a point of view that does not rely on a detailed knowledge of specific molecular functions and interactions, but instead focuses attention on dynamics of the microstructural arrangements between cytoskeletal proteins.

Type
Chapter
Information
Cytoskeletal Mechanics
Models and Measurements in Cell Mechanics
, pp. 50 - 70
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×