We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For over 50 years the theory of the stability of colloid suspensions due independently to Deryaguin and Landau and Verwey and Overbeek held centre stage in the field. Following the derivation from quantum mechanics of the attractive force between two molecules, it was a straightforward matter to add these forces up to arrive at a force between two model colloidal particles. This potential of interaction per unit area behaves, for two particles modelled as planar interfaces a distance l apart as, V(l) ≈ −A/(12πl2) where A is the Hamaker constant (see Chapter 2).
The double-layer force of repulsion between the (charged) surfaces behaves at large distances of separation as V(l) ≈ f · exp(−κDl). Here κD is the Debye length, which depends on salt concentration, and the prefactor is a complicated function of the surface charge or potential (see Chapter 3). Then a combination of these forces gives rise to a predicted net force of attraction like that shown schematically in Fig. 4.1.
These forces depend on geometry assumed for the particles (see Chapter 2). The insertion of this potential into a theory of coagulation of particles predicted whether the particles would stay in suspension or flocculate. The particles could flocculate into a ‘secondary minimum’, with a barrier usually at l ∼ 1/κD.
Or in the absence of such a barrier they could (theoretically) adhere into a deep ‘primary’ minimum at a distance of a few molecular diameters.
This book provides a thorough and comprehensive introduction to the physics of molecules and clusters in intense laser fields. It covers both theoretical and experimental aspects of the subject, and presents new research in the area of clusters in intense laser fields. Topics covered include coherent control, diatomic and polyatomic molecules, and femtosecond pulse production and diagnostics. Written by leading researchers in the field, this book will be of interest to graduate students and researchers in atomic, molecular and optical physics. It will also be suitable as a reference text for advanced physics courses.
Clusters can be viewed as solids at the nano-scale, yet molecular cluster chemistry and solid state chemistry have traditionally been considered as separate topics. This treatment has made it conceptually difficult to appreciate commonalities of structure and bonding between the two. Using analogous models, this is the first book to form a connecting bridge. Although the focus is on clusters, sufficient attention is paid to solid-state compounds at each stage of the development to establish the interrelationship between the two topics. Comprehensive coverage of cluster types by composition, size and ligation, is provided, as is a synopsis of selected research. Written in an accessible style and highly illustrated to aid understanding, this book is suitable for researchers in inorganic chemistry, physical chemistry, materials science, and condensed matter physics.
This book can be described as a student's edition of the author's Dynamical Theory of Gases. It is written, however, with the needs of the student of physics and physical chemistry in mind, and those parts of which the interest was mainly mathematical have been discarded. This does not mean that the book contains no serious mathematical discussion; the discussion in particular of the distribution law is quite detailed; but in the main the mathematics is concerned with the discussion of particular phenomena rather than with the discussion of fundamentals.
Written by two leading experts in the field, this book explores the 'many-body' methods that have become the dominant approach in determining molecular structure, properties and interactions. With a tight focus on the highly popular Many-Body Perturbation Theory (MBPT) and Coupled-Cluster theories (CC), the authors present a simple, clear, unified approach to describe the mathematical tools and diagrammatic techniques employed. Using this book the reader will be able to understand, derive and confidently implement relevant algebraic equations for current and even new multi-reference CC methods. Hundreds of diagrams throughout the book enhance reader understanding through visualization of computational procedures and extensive referencing allows further exploration of this evolving area. With an extensive bibliography and detailed index, this book will be suitable for graduates and researchers within quantum chemistry, chemical physics and atomic, molecular and solid-state physics.
This book brings together the essential ideas and methods behind applications of variational theory in theoretical physics and chemistry. The emphasis is on understanding physical and computational applications of variational methodology rather than on rigorous mathematical formalism. The text begins with an historical survey of familiar variational principles in classical mechanics and optimization theory, then proceeds to develop the variational principles and formalism behind current computational methodology for bound and continuum quantum states of interacting electrons in atoms, molecules, and condensed matter. It covers multiple-scattering theory, including a detailed presentation of contemporary methodology for electron-impact rotational and vibrational excitation of molecules. The book ends with an introduction to the variational theory of relativistic fields. Ideal for graduate students and researchers in any field that uses variational methodology, this book is particularly suitable as a backup reference for lecture courses in mathematical methods in physics and theoretical chemistry.
This book is a comprehensive introduction to electron-atom collisions, covering both theory and experiment. The interaction of electrons with atoms is the field that most deeply probes both the structure and reaction dynamics of a many-body system. The book begins with a short account of experimental techniques of cross-section measurement. It then introduces the essential quantum mechanics background needed. The following chapters cover one-electron problems (from the classic particle in a box to a relativistic electron in a central potential), the theory of atomic bound states, formal scattering theory, calculation of scattering amplitudes, spin-independent and spin-dependent scattering observables, ionisation and electron momentum spectroscopy. The connections between experimental and theoretical developments are emphasised throughout.
Photodissociation induced by the absorption of single photons permits the detailed study of molecular dynamics such as the breaking of bonds, internal energy transfer and radiationless transitions. The availability of powerful lasers operating over a wide frequency range has stimulated rapid development of new experimental techniques which make it possible to analyse photodissociation processes in unprecedented detail. This text elucidates the achievements in calculating photodissociation cross-sections and fragment state distributions from first principles, starting from multi-dimensional potential energy surfaces and the Schrödinger equation of nuclear motion. Following an extended introduction in which the various types of observables are outlined, the book summarises the basic theoretical tools, namely the time-independent and the time-dependent quantum mechanical approaches as well as the classical picture of photodissociation. The discussions of absorption spectra, diffuse vibrational structures, the vibrational and rotational state distributions of the photofragments form the core of the book. More specific topics such as the dissociation of vibrationally excited molecules, emission during dissociation, or nonadiabatic effects are also discussed. It will be of interest to graduate students and senior scientists working in molecular physics, spectroscopy, molecular collisions and molecular kinetics.
Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course.
This book provides a comprehensive introduction to the theory of the interaction between atoms and electromagnetic fields, an area which is central to the investigation of the fundamental concepts of quantum mechanics. The first four chapters describe the different forms of the interaction between atoms and radiation fields. The rest of the book deals with how these interactions lead to the formation of dressed states, in the presence of vacuum fluctuations, as well as in the presence of external fields. Also covered are the role of dressed atoms in quantum measurement theory, and the physical interpretation of vacuum radiative effects. Treating a key field on the boundary between quantum optics and quantum electrodynamics, the book will be of great use to graduate students, as well as to established experimentalists and theorists, in either of these areas.
Spectroscopic studies can reveal a wealth of information about the rotational and vibrational behaviour of the constituent molecules of gases and liquids. This 1994 book reviews the fundamental concepts and important models which underpin such studies, dealing in particular with the phenomenon of spectral collapse, which accompanies the transition from rare gas to dense liquid. Throughout, discussion of the various quantum mechanical and semiclassical theories is interwoven with analysis of experimental results. These include data from optical, NMR, ESR and acoustic investigations. The book concludes with a discussion of the latest theories describing the mechanism of rotational diffusion in liquid solutions. This comprehensive review of theoretical models and techniques will be invaluable to graduate students and researchers interested in molecular dynamics and spectroscopy.
This monograph describes the theory and practice of electron spectrometry using synchrotron radiation. The book is in three parts. After a short review of background theory, neon is used to elucidate the principles of the photoelectron and Auger spectra. The second part of the book looks at experimental aspects, including characteristic features of electrostatic analysers, detectors, lenses, disturbances, and optimisation, and then illustrates theory and experiment with details of recent experiments. The third part provides useful reference data, including wavefunctions, special theory, polarisation and special aspects of instrumentation. A detailed reference list completes the volume. The study of electron spectrometry using synchrotron radiation is a growing field of research driven by the increasing availability of advanced synchrotron radiation light sources and improved theoretical methods for solving the many-electron problem in atoms. This balanced account will be of value to both theorists and experimentalists working in this area.
This 1997 book is an introduction to the application of computer simulation and theory in the study of the interaction of energetic particles (< 1 eV to the MeV range) with solid surfaces. The authors describe methods which are applicable both to hard collisions between nuclear cores of atoms down to soft interactions, where chemical effects or long-range forces dominate. In surface science, potential applications include surface atomic structure determination using ion scattering spectroscopy or element analysis using SIMS or other techniques that involve depth profiling. Industrial applications include optical or hard coating deposition, ion implantation in semiconductor device manufacture or nanotechnology. Plasma-sidewall interaction in fusion devices may also be studied using the techniques described. This book will be of interest to graduate students and researchers, both academic and industrial, in surface science, semiconductor engineering, thin-film deposition and particle-surface interactions, in departments of physics, chemistry and electrical engineering.
This book provides a thorough introduction to the interaction of atoms and atomic ions with optical and magnetic fields. Particular emphasis is placed on the wealth of important multilevel effects, where atomic vapours exhibit anisotropic behaviour. As well as covering the classic two-level atom approach to light-atom interactions, a general multi-level formalism is also described in detail, and used to discuss optical pumping, two-dimensional spectroscopy and nonlinear optical dynamics. The final chapter deals with the mechanical effects of light, including the cooling and trapping of atoms. With full theoretical and experimental coverage, and over 250 illustrations, the book will be of great interest to graduate students of laser spectroscopy, quantum electronics and quantum optics, and to researchers in these fields.
This book explains the theory and methods by which gas molecules can be polarized by light, a subject of considerable importance for what it tells us about the electronic structure of molecules and properties of chemical reactions. Starting with a brief review of molecular angular momentum, the text goes on to consider resonant absorption, fluorescence, photodissociation and photoionization, as well as collisions and static fields. A variety of macroscopic effects are considered, among them angular distribution and the polarization of emitted light, ground state depopulation, laser-induced dichroism, the effect of collisions and external magnetic and electric field effects. Most examples in the book are for diatomic molecules, but symmetric-top polyatomic molecules are also included. The book concludes with a short appendix of essential formulae, tables for vector calculus, spherical functions, Wigner rotation matrices, Clebsch-Gordan coefficients, and methods for expansion over irreducible tensors.
The discovery of Bose–Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first treatment of BEC at finite temperatures, this book presents a thorough account of the theory of two-component dynamics and nonequilibrium behaviour in superfluid Bose gases. It uses a simplified microscopic model to give a clear, explicit account of collective modes in both the collisionless and collision-dominated regions. Major topics such as kinetic equations, local equilibrium and two-fluid hydrodynamics are introduced at an elementary level. Explicit predictions are worked out and linked to experiments. Providing a platform for future experimental and theoretical studies on the finite temperature dynamics of trapped Bose gases, this book is ideal for researchers and graduate students in ultracold atom physics, atomic, molecular and optical physics and condensed matter physics.
In recent years, Rydberg atoms have been the subject of intense study, becoming the testing ground for several quantum mechanical problems. This book provides a comprehensive description of the physics of Rydberg atoms, highlighting their remarkable properties by reference to their behaviour in a wide range of physical situations. Following an overview of the basic properties of Rydberg atoms, their interactions with electric and magnetic fields are analysed in detail. The collisions of Rydberg atoms with neutral and charged species are described, and the use of multichannel quantum defect theory in the study of Rydberg atomic systems is discussed. Experimental and theoretical research in this extensive field is also reviewed, making the book valuable to both graduate students and established researchers in physics and physical chemistry.
This book reviews the present knowledge of collision-induced absorption of infrared radiation in the dense, common gases. Following a brief introduction and review of essential background information, such as dipole radiation, molecular collisions and interactions, numerous experimental results for the absorption spectra of dense gases are presented. Other chapters review the causes and properties of dipole moments induced by molecular interactions, the theory of collision-induced absorption in monatomic gas mixtures and in molecular gases and mixtures. The final chapter discusses related phenomena and the important applications in astrophysics. Throughout the book, the emphasis is on the absorption by binary molecular complexes, but the onset of many-body effects, such as the ternary contributions and the intercollisional process, are also considered. The volume is meant to be a practical guide and sourcebook for the researcher interested in the spectroscopy of dense, neutral fluids. This edition includes a new appendix reviewing recent work.
This introduction to the field of many-body atomic physics is suitable for researchers and graduate students. Drawing from three major subject areas, atomic structure, atomic photoionization, and electron-atom collisions, this book begins with an introduction to many-body diagrams, and continues with several chapters devoted to each subject area written by leading theorists in that field. Topics in atomic structure include the relativistic theory for highly charged atomic ions and calculations of parity nonconservation. Topics in atomic photoionization include single and double photoionization processes, and photoelectron angular distributions. Topics in electron-atom collisions include the theory of electron impact ionization, perturbation series methods, target dependence of the triply differential cross section, Thomas processes, R-matrix theory, close coupling, and distorted-wave theory. This coherent and carefully edited volume has been prepared by leading atomic physicists as a tribute to Hugh Kelly, one of the pioneers of many-body theory.