We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
A new observatory site should be investigated for its local climate conditions to see its potential and limitations. In this respect, we examine several meteorological parameters at the site of Timau National Observatory, Indonesia using the ERA5 dataset from 2002 to 2021. Based on this dataset, we conclude that the surface temperature at Timau is around $18.9^{\circ}$C with relatively small temperature variation ($\sim$$1.5^{\circ}$C) over the day. This temperature stability is expected to give advantages to the observatory. In terms of humidity and water vapour, Timau is poor for infrared observations as the median precipitable water vapour exceeds 18 mm, even during the dry season. However, near-infrared observations are feasible. Even though our cloud cover analysis confirms the span of the observing season in the region, we find a significant discrepancy between the clear sky fraction derived from the ERA5 dataset and the one estimated using satellite imagery. Aside from the indicated bias, our results provide insights and directions for the operation and future development of the observatory.
The operation of the ANU 2.3 m telescope transitioned from classically scheduled remote observing to fully autonomous queue scheduled observing in March 2023. The instrument currently supported is WiFeS, a visible-light low-resolution image-slicing integral field spectrograph with a $25^{\prime\prime}\,\times38^{\prime\prime}$ field of view (offering precision spectrophotometry free from aperture effects). It is highly suitable for rapid spectroscopic follow-up of astronomical transient events and regular cadence observations. The new control system implements flexible queue scheduling and supports rapid response override for target-of-opportunity observations. The ANU 2.3 m is the largest optical telescope to have been retro-fitted for autonomous operation to date, and it remains a national facility servicing a broad range of science cases. We present an overview of the automated control system and report on the first six months of continuous operation.
V5579 Sgr was a fast nova discovered in 2008 April 18.784 UT. We present the optical spectroscopic observations of the nova observed from the Castanet Tolosan, SMARTS, and CTIO observatories spanning over 2008 April 23 to 2015 May 11. The spectra are dominated by hydrogen Balmer, Fe II, and O I lines with P-Cygni profiles in the early phase, typical of an Fe II class nova. The spectra show He I and He II lines along with forbidden lines from N, Ar, S, and O in the nebular phase. The nova showed a pronounced dust formation episode that began about 20 days after the outburst. The dust temperature and mass were estimated using the WISE data from spectral energy distribution (SED) fits. The PAH-like features are also seen in the nova ejecta in the mid-infrared Gemini spectra taken 522 d after the discovery. Analysis of the light curve indicates values of $t_2$ and $t_3$ about 9 and 13 days, respectively, placing the nova in the category of fast nova. The best-fit cloudy model of the early decline phase JHK spectra obtained on 2008 May 3 and the nebular optical spectrum obtained on 2011 June 2 shows a hot white dwarf source with $T_{BB}$$\sim$ 2.6 $\times$ 10$^5$ K having a luminosity of 9.8 $\times$ 10$^{36}$ ergs s$^{-1}$. Our abundance analysis shows that the ejecta is significantly enhanced relative to solar, O/H = 32.2, C/H = 15.5, and N/H = 40.0 in the early decline phase and O/H = 5.8, He/H = 1.5, and N/H = 22.0 in the nebular phase.
Recent discoveries of multiple long-period pulsars (periods ${\sim}10\,$s or larger) are starting to challenge the conventional notion that coherent radio emission cannot be produced by objects that are below the many theorised death lines. Many of the past pulsar surveys and software have been prone to selection effects that restricted their sensitivities towards long-period and sporadically emitting objects. Pulsar surveys using new-generation low-frequency facilities are starting to employ longer dwell times, which makes them significantly more sensitive in detecting long-period or nulling pulsars. There have also been software advancements to aid more sensitive searches towards long-period objects. Furthermore, recent discoveries suggest that nulling may be a key aspect of the long-period pulsar population. We simulate both long-period and nulling pulsar signals, using the Southern-sky MWA Rapid Two-meter (SMART) survey data as reference and explore the detection efficacy of popular search methods such as the fast Fourier transform (FFT), fast-folding algorithm (FFA) and single pulse search (SPS). For FFT-based search and SPS, we make use of the PRESTO implementation, and for FFA we use RIPTIDE. We find RIPTIDE’s FFA to be more sensitive; however, it is also the slowest algorithm. PRESTO’s FFT, although faster than others, also shows some unexpected inaccuracies in detection properties. SPS is highly sensitive to long-period and nulling signals, but only for pulses with high intrinsic signal-to-noise ratios. We use these findings to inform current and future pulsar surveys that aim to uncover a large population of long-period or nulling objects and comment on how to make optimal use of these methods in unison.
This study presents an analysis of the optical variability of the blazar 1E 1458.8+2249 on diverse timescales using multi-band observations, including observations in the optical BVRI bands carried out with the T60 and T100 telescopes from 2020 to 2023 and ZTF gri data from 2018 to 2023. On seven nights, we searched for intraday variability using the power-enhanced F-test and the nested ANOVA test, but no significant variability was found. The long-term light curve shows a variability behaviour in the optical BVRI bands with amplitudes of $\sim$100% and in the gri bands with amplitudes of $\sim$120%, including short-term variability of up to $\sim$1.1 mag. Correlation analysis revealed a strong correlation between the optical multi-band emissions without any time lag. From 62 nightly spectral energy distributions, we obtained spectral indices between 0.826 and 1.360, with an average of $1.128\pm0.063$. The relationships of both spectral indices and colour with respect to brightness indicate a mild BWB trend throughout the observation period, both intraday and long-term. We also performed a periodicity search using the weighted wavelet Z-transform and Lomb–Scargle methods. A recurrent optical emission pattern with a quasi-periodicity of $\sim$340 days is detected in the combined V- and R-band light curves. The observational results indicate that the blazar 1E 1458.8+2249 has a complex variability, while emphasising the need for future observations to unravel its underlying mechanisms.
Traditional pulsar surveys have primarily employed time-domain periodicity searches. However, these methods are susceptible to effects like scattering, eclipses, and orbital motion. At lower radio frequencies ($\lesssim$300 MHz), factors such as dispersion measure and pulse broadening become more prominent, reducing the detection sensitivity. On the other hand, image domain searches for pulsars are not limited by these effects and can extend the parameter space to regions inaccessible to traditional search techniques. Therefore, we have developed a pipeline to form 1-second full Stokes images from offline correlated high time-resolution data from the Murchison Widefield Array (MWA). This led to the development of image-based methodologies to identify new pulsar candidates. In this paper, we applied these methodologies to perform a low-frequency image-based pulsar census of the galactic plane (12 MWA observations, covering $\sim$6 000 $\textrm{deg}^\textrm{2}$ sky). This work focuses on the detection of the known pulsar population which were present in the observed region of the sky using both image-based and beamformed methods. This resulted in the detection of 83 known pulsars, with 16 pulsars found only in Stokes I images but not in periodicity searches applied in beamformed data. Notably, for 14 pulsars these are the first reported low-frequency detections. This underscores the importance of image-based searches for pulsars that may be undetectable in time-series data, due to scattering and/or dispersive smearing at low frequencies. This highlights the importance of low-frequency flux density measurements in refining pulsar spectral models and investigating the spectral turnover of pulsars at low frequencies.
Fast Radio Bursts (FRBs) are millisecond dispersed radio pulses of predominately extra-galactic origin. Although originally discovered at GHz frequencies, most FRBs have been detected between 400 and 800 MHz. Nevertheless, only a handful of FRBs were detected at radio frequencies $\le$400 MHz. Searching for FRBs at low frequencies is computationally challenging due to increased dispersive delay that must be accounted for. Nevertheless, the wide field of view (FoV) of low-frequency telescopes – such as the the Murchison Widefield Array (MWA), and prototype stations of the low-frequency Square Kilometre Array (SKA-Low) – makes them promising instruments to open a low-frequency window on FRB event rates, and constrain FRB emission models. The standard approach, inherited from high-frequencies, is to form multiple tied-array beams to tessellate the entire FoV and perform the search on the resulting time series. This approach, however, may not be optimal for low-frequency interferometers due to their large FoVs and high spatial resolutions leading to a large number of beams. Consequently, there are regions of parameter space in terms of number of antennas and resolution elements (pixels) where interferometric imaging is computationally more efficient. Here we present a new high-time resolution imager BLINK implemented on modern graphical processing units (GPUs) and intended for radio astronomy data. The main goal for this imager is to become part of a fully GPU-accelerated FRB search pipeline. We describe the imager and present its verification on real and simulated data processed to form all-sky and widefield images from the MWA and prototype SKA-Low stations. We also present and compare benchmarks of the GPU and CPU code executed on laptops, desktop computers, and Australian supercomputers. The code is publicly available at https://github.com/PaCER-BLINK-Project/imager and can be applied to data from any radio telescope.
In order to study exoplanets, a comprehensive characterisation of the fundamental properties of the host stars – such as angular diameter, temperature, luminosity, and age, is essential, as the formation and evolution of exoplanets are directly influenced by the host stars at various points in time. In this paper, we present interferometric observations taken of directly imaged planet host 51 Eridani at the CHARA Array. We measure the limb-darkened angular diameter of 51 Eridani to be $\theta_\mathrm{LD} = 0.450\pm 0.006$ mas and combining with the Gaia zero-point corrected parallax, we get a stellar radius of $1.45 \pm 0.02$ R$_{\odot}$. We use the PARSEC isochrones to estimate an age of $23.2^{+1.7}_{-2.0}$ Myr and a mass of $1.550^{+0.006}_{-0.005}$ M$_{\odot}$. The age and mass agree well with values in the literature, determined through a variety of methods ranging from dynamical age trace-backs to lithium depletion boundary methods. We derive a mass of $4.1\pm0.4$ M$_\mathrm{Jup}$ for 51 Eri b using the Sonora Bobcat models, which further supports the possibility of 51 Eri b forming under either the hot-start formation model or the warm-start formation model.
In gamma-ray binaries neutron star is orbiting a companion that produces a strong stellar wind. We demonstrate that observed properties of ‘stellar wind’–‘pulsar wind’ interaction depend both on the overall wind thrust ratio, as well as more subtle geometrical factors: the relative direction of the pulsar’s spin, the plane of the orbit, the direction of motion, and the instantaneous line of sight. Using fully 3D relativistic magnetohydrodynamical simulations we find that the resulting intrinsic morphologies can be significantly orbital phase-dependent: a given system may change from tailward-open to tailward-closed shapes. As a result, the region of unshocked pulsar wind can change by an order of magnitude over a quarter of the orbit. We calculate radiation maps and synthetic light curves for synchrotron (X-ray) and inverse-Compton emission (GeV-TeV), taking into account $\gamma $–$\gamma $ absorption. Our modelled light curves are in agreement with the phase-dependent observed light curves of LS5039.
The interaction between stellar winds and the partially ionized local interstellar medium (LISM) is quite common in astrophysics. However, the main difficulty in describing the neutral components lies in the fact that the mean free path of an interstellar atom, l, can be comparable to the characteristic size of an astrosphere, L (i.e. the Knudsen number, which is equal to l/L, is approximately equal to 1, as in the case of the heliosphere). In such cases, a single-fluid approximation becomes invalid, and a kinetic description must be used for the neutral component. In this study, we consider a general astrosphere and use a kinetic-gas dynamics model to investigate how the global structure of the astrosphere depends on the Knudsen number. We present numerical results covering an extremely wide range of Knudsen numbers (from 0.0001 to 100). Additionally, we explore the applicability of single-fluid approaches for modelling astrospheres of various sizes. We have excluded the influence of interstellar and stellar magnetic fields in our model to make parametric study of the kinetic effects feasible. The main conclusion of this work is that, for large astrospheres (with a distance to the bow shock greater than 600 AU) a heated rarefied plasma layer forms in the outer shock layer near the astropause. The formation of this layer is linked to localized heating of the plasma by atoms (specifically, ENAs) that undergo charge exchange again behind the astropause. This process significantly alters the flow structure in the outer shock layer and the location of the bow shock, and it cannot be described by a single-fluid model. Additionally, this paper discusses how atoms weaken the bow shocks at near-heliospheric conditions.
We applied a Density-Based Clustering algorithm on samples of galaxies and galaxy systems belonging to 53 rich superclusters from the Main SuperCluster Catalogue to identify the presence of “central regions’’, or cores, in these large-scale structures. Cores are defined here as large gravitationally bound galaxy structures, comprised of two or more clusters and groups, with sufficient matter density to survive cosmic expansion and virialize in the future. We identified a total of 105 galaxy structures classified as cores, which exhibit a high density contrast of mass and galaxies. The Density-based Core Catalogue, presented here, includes cores that were previously reported in well-known superclusters of the Local Universe, and also several newly identified ones. We found that 83% of the rich superclusters in our sample have at least one core. While more than three cores with different dynamical state are possible, the presence of a single core in the superclusters is more common. Our work confirms the existence of nucleation regions in the internal structure of most rich superclusters and points to the fact that these cores are the densest and most massive features that can be identified in the cosmic web with high probability for future virialization.
To detect additional bodies in binary systems, we performed a potent approach of orbital period variation analysis. In this work, we present 90 new mid-eclipse times of a short-period eclipsing binary system. Observations were made using two telescopes from 2014 to 2024, extending the time span of the $O-C$ diagram to 24 yr. The data obtained in the last seven years indicate significant deviations in the $O-C$ diagram from the models obtained in previous studies. We investigated whether this variation could be explained by mechanisms such as the LTT effect or Applegate. To investigate the cyclic behaviour observed in the system with the light travel time effect, we modelled the updated $O-C$ diagram using different models including linear/quadratic terms and additional bodies. The updated $O-C$ diagram is statistically consistent with the most plausible solutions of models that include multiple brown dwarfs close to each other. However, it has been found that the orbit of the system is unstable on short time scales. Using three different theoretical definitions, we have found that the Applegate mechanism cannot explain the variation in the orbital period except for the model containing the fifth body. Therefore, due to the complex nature of the system, further mid-eclipse time is required before any conclusions can be drawn about the existence of additional bodies.
We investigated the kinematics and dynamics of gas structures on galaxy-cloud scales in two spiral galaxies NGC5236 (M83) and NGC4321 (M100) using CO (2$-$1) line. We utilised the FILFINDER algorithm on integrated intensity maps for the identification of filaments in two galaxies. Clear fluctuations in velocity and density were observed along these filaments, enabling the fitting of velocity gradients around intensity peaks. The variations in velocity gradient across different scales suggest a gradual and consistent increase in velocity gradient from large to small scales, indicative of gravitational collapse, something also revealed by the correlation between velocity dispersion and column density of gas structures. Gas structures at different scales in the galaxy may be organised into hierarchical systems through gravitational coupling. All the features of gas kinematics on galaxy-cloud scale are very similar to that on cloud-clump and clump-core scales studied in previous works. Thus, the interstellar medium from galaxy to dense core scales presents multi-scale/hierarchical hub-filament structures. Like dense core as the hub in clump, clump as the hub in molecular cloud, now we verify that cloud or cloud complex can be the hub in spiral galaxies. Although the scaling relations and the measured velocity gradients support the gravitational collapse of gas structures on galaxy-cloud scales, the collapse is much slower than a pure free-fall gravitational collapse.
A number of nearby dwarf galaxies have globular cluster (GC) candidates that require spectroscopic confirmation. Here, we present Keck telescope spectra for 15 known GCs and GC candidates that may be associated with a host dwarf galaxy and an additional 3 GCs in the halo of M31 that are candidates for accretion from a now-disrupted dwarf galaxy. We confirm six star clusters (of intermediate-to-old age) to be associated with NGC 247. The vast bulk of its GC system remains to be studied spectroscopically. We also confirm the GC candidates in F8D1 and DDO190, finding both to be young star clusters. The three M31 halo GCs all have radial velocities consistent with M31 and are old and very metal-poor. Their ages and metallicities are consistent with accretion from a low-mass satellite galaxy. Finally, three objects are found to be background galaxies – two are projected near NGC 247 and one (candidate GCC7) is near the IKN dwarf. The IKN dwarf thus has only five confirmed GCs but still a remarkable specific frequency of 124.
We explore the globular cluster population of NGC 1052-DF4, a dark matter deficient galaxy, using Bayesian inference to search for the presence of rotation. The existence of such a rotating component is relevant to the estimation of the mass of the galaxy, and therefore the question of whether NGC 1052-DF4 is truly deficient of dark matter, similar to NGC 1052-DF2, another galaxy in the same group. The rotational characteristics of seven globular clusters in NGC 1052-DF4 were investigated, finding that a non-rotating kinematic model has a higher Bayesian evidence than a rotating model, by a factor of approximately 2.5. In addition, we find that under the assumption of rotation, its amplitude must be small. This distinct lack of rotation strengthens the case that, based on its intrinsic velocity dispersion, NGC 1052-DF4 is a truly dark matter deficient galaxy.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
Observing stars and satellites in optical wavelengths during the day (optical daytime astronomy) has begun a resurgence of interest. The recent dramatic dimming event of Betelgeuse has spurred interest in continuous monitoring of the brightest variable stars, even when an object is only visible during the day due to their proximity to the Sun. In addition, an exponential increase in the number of satellites being launched into low Earth orbit in recent years has driven an interest in optical daytime astronomy for the detection and monitoring of satellites in space situational awareness (SSA) networks. In this paper we explore the use of the Huntsman Telescope as an optical daytime astronomy facility, by conducting an exploratory survey using a pathfinder instrument. We find that an absolute photometric accuracy between 1–10% can be achieved during the day, with a detection limit of V band 4.6 mag at midday in sloan $g,$ and $r,$ wavelengths. In addition, we characterise the daytime sky brightness, colour, and observing conditions in order to achieve the most reliable and highest signal-to-noise observations within the limitations of the bright sky background. We undertake a 7-month survey of the brightness of Betelgeuse during the day and demonstrate that our results are in agreement with measurements from other observatories. Finally we present our preliminary results that demonstrate obtaining absolute photometric measurements of the International Space Station during the day.
We report the results of our analysis of six gravity-mode pulsating hot subdwarf stars observed in the short cadence mode by Transiting Exoplanet Survey Satellite. We detected at least 10 pulsation periods in each star, searched for multiplets, and used an asymptotic period spacing to identify modes. We used a grid of evolutionary and pulsation models calculated with the MESA and GYRE, along with spectroscopic parameters and modal degree identification, to derive the physical properties of the stars. We checked the relation between the helium content and pulsations and found that no pulsator exists among the extremely helium-rich hot subdwarfs, while the number of detected pulsators in other helium groups increases as the helium content decreases. We found p- and g-mode hot subdwarfs pulsators in all Galactic populations.