We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nominal sets provide a promising new mathematical analysis of names in formal languages based upon symmetry, with many applications to the syntax and semantics of programming language constructs that involve binding, or localising names. Part I provides an introduction to the basic theory of nominal sets. In Part II, the author surveys some of the applications that have developed in programming language semantics (both operational and denotational), functional programming and logic programming. As the first book to give a detailed account of the theory of nominal sets, it will be welcomed by researchers and graduate students in theoretical computer science.
Lambda calculus is a formalism introduced by Church in 1932 that was intended to be used as a foundation for mathematics, including its computational aspects. Supported by his students Kleene and Rosser – who showed that the prototype system was inconsistent – Church distilled a consistent computational part and ventured in 1936 the Thesis that exactly the intuitively computable functions could be captured by it. He also presented a function that could not be captured by the λ-calculus. In that same year Turing introduced another formalism, describing what are now called Turing Machines, and formulated the related Thesis that exactly the mechanically computable functions are able to be captured by these machines. Turing also showed in the same paper that the question of whether a given statement could be proved(from a given setofaxioms) using the rules of any reasonable system of logic is not computable in this mechanical way. Finally Turing showed that the formalism of λ-calculus and Turing Machines define the same class of functions.
Together Church's Thesis, concerning computability by homo sapiens, and Turing's Thesis, concerning computability by mechanical devices, using formalisms that are equally powerful and that have their computational limitations, made a deep impact on the 20th century philosophy of the power and limitations of the human mind. So far, cognitive neuropsychology has not been able to refute the combined Church-Turing Thesis. On the contrary, that discipline also shows the limitation of human capacities.