In this paper, we consider a Borel
measurable function on
the space of
$\scriptstyle m\times n$ matrices $\scriptstyle f:
M^{m\times n}\rightarrow \bar{\mathbb{R}}$
taking the value
$ \scriptstyle +\infty$, such that its rank-one-convex
envelope
$\scriptstyle Rf$ is finite and satisfies for some fixed
$\scriptstyle p>1$:
$$\scriptstyle -c_0\leq Rf(F)\leq c(1+\Vert F\Vert^p)\
\hbox{for all}\ F\in
M^{m\times n},$$
where
$\scriptstyle c,c_0>0$. Let $\scriptstyle\O$ be a given
regular bounded
open domain of
$\scriptstyle \mathbb{R}^n$. We define on $\scriptstyle
W^{1,p}(\O;\mathbb{R}^m)$
the functional
$$\scriptstyle I(u)=\int_{\O}f(\nabla u(x))\ dx.$$
Then, under some technical restrictions on
$\scriptstyle f$, we show that the relaxed functional
$\scriptstyle\bar I$
for the weak topology
of
$\scriptstyle W^{1,p}(\O;\mathbb{R}^m)$ has the integral
representation:
$$\scriptstyle \bar I(u)=\int_{\O}Q[Rf](\nabla u(x))\
dx,$$
where for a given function $\scriptstyle g$,
$\scriptstyle Qg$ denotes its
quasiconvex envelope.