Let
$T$
be a quadratic operator on a complex Hilbert space
$H$
. We show that
$T$
can be written as a product of two positive contractions if and only if
$T$
is of the form
$$aI\,\oplus \,bI\,\oplus \left( \begin{matrix} aI & P \\ 0 & bI \\ \end{matrix} \right)\,\text{on}\,{{H}_{1}}\,\oplus \,{{H}_{2}}\,\oplus \,\left( {{H}_{3\,}}\,\oplus \,{{H}_{3}} \right)$$
for some
$a,\,b\,\in \,\left[ 0,\,1 \right]$
and strictly positive operator
$P$
with
$\left\| P \right\|\,\le \,\left| \sqrt{a}-\sqrt{b} \right|\sqrt{\left( 1-a \right)\left( 1-b \right)}$
. Also, we give a necessary condition for a bounded linear operator
$T$
with operator matrix
$\left( \begin{matrix}
{{T}_{1}} & {{T}_{3}} \\
0 & {{T}_{2}} \\
\end{matrix} \right)$
on
$H\,\oplus \,K$
that can be written as a product of two positive contractions.