The disassembly of end-of-life lithium–ion batteries (EOL-LIBs) is inherently complex, owing to their multi-state and multi-type characteristics. To mitigate these challenges, a human–robot collaboration disassembly (HRCD) model is developed. This model capitalizes on the cognitive abilities of humans combined with the advanced automation capabilities of robots, thereby substantially improving the disassembly process’s flexibility and efficiency. Consequently, this method has become the benchmark for disassembling EOL-LIBs, given its enhanced ability to manage intricate and adaptable disassembly tasks. Furthermore, effective disassembly sequence planning (DSP) for components is crucial for guiding the entire disassembly process. Therefore, this research proposes an approach for the generation of HRCD sequences for EOL-LIBs based on knowledge graph, providing assistance to individuals lacking relevant knowledge to complete disassembly tasks. Firstly, a well-defined disassembly process knowledge graph integrates structural information from CAD models and disassembly operating procedure. Based on the acquired information, DSP is conducted to generate a disassembly sequence knowledge graph (DSKG), which serves as a repository in graphical form. Subsequently, knowledge graph matching is employed to align nodes in the existing DSKG, thereby reusing node sequence knowledge and completing the sequence information for the target disassembly task. Finally, the proposed method is validated using retired power LIBs as a case study product.