Insecticide resistance is an important factor in the effectiveness of Aedes aegypti control and the related spread of dengue. The objectives of this study were to investigate the status of the organochlorine dichlorodiphenyltrichloroethane (DDT) and pyrethroid (permethrin and deltamethrin) resistance in Trinidad and Tobago populations of Ae. aegypti and the underlying biochemical mechanisms. Nine populations of Ae. aegypti larvae from Trinidad and Tobago were assayed to DDT and PYs using the Centers for Disease Control and Prevention (CDC) time-mortality-based bioassay method. A diagnostic dosage (DD) was established for each insecticide using the CAREC reference susceptible Ae. aegypti strain and a resistance threshold (RT), time in which 98–100% mortality was observed in the CAREC strain, was calculated for each insecticide. Mosquitoes which survived the DD and RT were considered as resistant, and the resistance status of each population was categorised based on the WHO criteria with mortality <80% indicative of resistance. Biochemical assays were conducted to determine the activities of α and β esterases, mixed function oxidases (MFO) and glutathione-S-transferases (GST) enzymes which are involved in resistance of mosquitoes to DDT and PYs. Enzymatic activity levels in each population were compared with those obtained for the CAREC susceptible strain, and significant differences were determined by Kruskal-Wallis and Tukey's non-parametric tests (P<0.05). The established DDs were 0.01 mg l−1, 0.2 mg l−1 and 1.0 mg l−1 for deltamethrin, permethrin and DDT, respectively; and the RTs for deltamethrin, permethrin and DDT were 30, 75 and 120 min, respectively. All Ae. aegypti populations were resistant to DDT (<80% mortality); two strains were incipiently resistant to deltamethrin and three to permethrin (80–98% mortality). Biochemical assays revealed elevated levels of α-esterase and MFO enzymes in all Ae. aegypti populations. All, except three populations, showed increased levels of β-esterases; and all populations, except Curepe, demonstrated elevated GST levels.
Metabolic detoxification of enzymes is correlated with the manifestation of DDT and PY resistance in Trinidad and Tobago populations of Ae. aegypti. The presence of this resistance also suggests that knock down (kdr)-type resistance may be involved, hence the need for further investigations. This information can contribute to the development of an insecticide resistance surveillance programme and improvement of resistance management strategies aimed at combatting the spread of dengue in Trinidad and Tobago.