We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that $(X,\unicode[STIX]{x1D714})$ is a compact Kähler manifold. In the present work we propose a construction for weak geodesic rays in the space of Kähler potentials that is tied together with properties of the class ${\mathcal{E}}(X,\unicode[STIX]{x1D714})$. As an application of our construction, we prove a characterization of ${\mathcal{E}}(X,\unicode[STIX]{x1D714})$ in terms of envelopes.
We study a notion of ‘b-stability’, introduced previously by the author in connection with the existence of constant scalar curvature Kähler, and Kähler-Einstein, metrics. The main result is Theorem 1.2, which makes progress towards a statement that the existence of such metrics implies b-stability. The proof is a modification of an argument of Stoppa, taking account of the birational transformations involved in the definition of b-stability.
We study a class of Hermitian metrics on complex manifolds, recently introduced by Fu, Wang and Wu, which are a generalization of Gauduchon metrics. This class includes the class of Hermitian metrics for which the associated fundamental 2-form is ∂∂-closed. Examples are given on nilmanifolds, on products of Sasakian manifolds, on S1-bundles and via the twist construction introduced by Swann.
We characterize four-dimensional generalized complex forms and construct an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.
Le but de cette note est de proposer une caractérisation des espaces projectifs complexes, des hyperquadriques et des hypersurfaces du troisième degré dans Pnc à l'aide de leurs points d'intersection avec l'ensemble des zéros d'une section d'un fibre positif donné sur la variété ambiante. Ceci généralise et complète ainsi certains résultats présentés par Badescu et Itoh.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.