Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T14:02:57.520Z Has data issue: false hasContentIssue false

WEAK GEODESIC RAYS IN THE SPACE OF KÄHLER POTENTIALS AND THE CLASS ${\mathcal{E}}(X,\unicode[STIX]{x1D714})$

Published online by Cambridge University Press:  03 September 2015

Tamás Darvas*
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that $(X,\unicode[STIX]{x1D714})$ is a compact Kähler manifold. In the present work we propose a construction for weak geodesic rays in the space of Kähler potentials that is tied together with properties of the class ${\mathcal{E}}(X,\unicode[STIX]{x1D714})$. As an application of our construction, we prove a characterization of ${\mathcal{E}}(X,\unicode[STIX]{x1D714})$ in terms of envelopes.

Type
Research Article
Copyright
© Cambridge University Press 2015 

References

Arezzo, C. and Tian, G., Infnite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(4) (2003), 617630.Google Scholar
Bedford, E. and Tayor, B. A., A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 140.Google Scholar
Berman, R., Boucksom, S., Guedj, V. and Zeriahi, A., A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179245.Google Scholar
Berndtsson, B., Probability measures related to geodesics in the space of Kähler metrics, Preprint, 2009, arXiv:0907.1806.Google Scholar
Berndtsson, B., A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math. 200(1) (2015), 149200.Google Scholar
Blocki, Z., Uniqueness and stability for the Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 16971702.Google Scholar
Blocki, Z., The complex Monge–Ampère equation in Kähler geometry, course given at CIME Summer School in Pluripotential Theory, Cetraro, Italy, July 2011 (ed. Bracci, F. and Fornæss, J. E.), Lecture Notes in Mathematics, Volume 2075, pp. 95142 (Springer, 2013).Google Scholar
Boucksom, S., Eyssidieux, P., Guedj, V. and Zeriahi, A., Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199262.Google Scholar
Branker, M. M. and Stawiska, M., Weighted pluripotential theory on complex Kähler manifolds, Ann. Polon. Math. 95(2) (2009), 163177. arXiv:0801.3015.Google Scholar
Chen, X. X., The space of Kähler metrics, J. Differential Geom. 56(2) (2000), 189234.Google Scholar
Chen, X. X., Space of Kähler metrics III: on the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175(3) (2009), 453503.Google Scholar
Chen, X. X. and Tang, Y., Test configuration and geodesic rays, Géometrie differentielle, physique mathématique, mathématiques et société. I, Astérisque 321 (2008), 139167.Google Scholar
Darvas, T., Envelopes and geodesics in spaces of Kähler potentials, Preprint, 2014,arXiv:1401.7318.Google Scholar
Darvas, T. and Lempert, L., Weak geodesics in the space of Kähler metrics, Math. Res. Lett. 19 (2013), 11271135.Google Scholar
Donaldson, S. K., Symmetric spaces, in Kähler geometry and Hamiltonian dynamics, American Mathematical Society Translations, Series 2, Volume 196, pp. 1333 (American Mathematical Society, Providence RI, 1999).Google Scholar
Eyssidieux, P., Guedj, V. and Zeriahi, A., Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607639.Google Scholar
Guedj, V. and Zeriahi, A., The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250(2) (2007), 442482.Google Scholar
Mabuchi, T., Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math. 24 (1987), 227252.Google Scholar
Phong, D. H. and Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom. 5(2) (2007), 221247.Google Scholar
Ross, J. and Witt-Nyström, D., Analytic test configurations and geodesic rays, J. Symplectic Geom. 12(1) (2014), 125169.Google Scholar
Ross, J. and Witt-Nyström, D., Envelopes of positive metrics with prescribed singularities, Preprint, 2012, arXiv:1210.2220.Google Scholar
Rubinstein, Y. A. and Zelditch, S., The Cauchy problem for the homogeneous Monge–Ampère equation, III. Lifespan, Preprint, 2012, arXiv:1205.4793.Google Scholar
Semmes, S., Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495550.CrossRefGoogle Scholar