We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The development of medical artificial intelligence is dependent on the availability of vast quantities of data, a considerable proportion of which is medical data containing sensitive information pertaining to the health and well-being of patients. The use of such data is subject to extensive legal regulation and is further hindered by financial and organisational constraints, which can result in limitations on accessibility. One potential solution to this problem is the use of synthetic data. This article examines the potential for their use in light of cybersecurity requirements derived from horizontal and sectoral EU legislation. The outcome of this analysis is that EU legislation does not contain specific regulations on the use of synthetic data. Consequently, it cannot be concluded that there is any prohibition on their use. Moreover, while the Medical Device Regulation (MDR) contains some general requirements for cybersecurity, these are further specified by the provisions of the AI Act. It is important to note, however, that the AI Act will not apply to Class I medical devices, which are subject only to the MDR. Furthermore, only indirect obligations within the scope under consideration can be derived from the horizontal regulations, which will apply in a limited number of cases.
Motion assistance for elderly people is a field of application for service robotic systems that can be characterized by requirements and constraints of human–machine interaction and by the specificity of the user’s conditions. The main aspects of characterization and constraints are examined for the application of service systems that can be specifically conceived or adapted for elderly motion assistance by having to consider conditions of motion deficiency and muscular strength weakness as well as psychological aptitudes of users. The analysis is discussed in general terms with reference to elderly people who may not even suffer from specific pathologies. Therefore, the discussion focuses on the need for motion exercise in proper environments, including domestic ones and frame familiar to a user. The challenges of such applications oriented toward elderly users are discussed as requiring research and design of solutions in terms of specific portability, user-oriented operation, low costs, and clinical-physiotherapeutic functionality. Results of the author’s team experiences are presented as an example of problems and attempted solutions to meet the new challenges of service systems for motion assistance applications for elderly people.
Medical devices increasingly include software components, which facilitate remote patient monitoring. The introduction of software into previously analog medical devices, as well as innovation in software-driven devices, may introduce new safety concerns – all the more so when such devices are used in patients’ homes, well outside of traditional health care delivery settings. We review four key mechanisms for the post-market surveillance of medical devices in the United States: (1) Post-market trials and registries; (2) manufacturing plant inspections; (3) adverse event reporting; and (4) recalls. We use comprehensive regulatory data documenting adverse events and recalls to describe trends in the post-market safety of medical devices, based on the presence or absence of software. Overall, devices with software are associated with more reported adverse events (i.e. individual injuries and deaths) and more high-severity recalls, compared to devices without software. However, in subgroup analyses of individual medical specialties, we consistently observe differences in recall probability but do not consistently detect differences in adverse events. These results suggest that adverse events are a noisy signal of post-market safety and not necessarily a reliable predictor of subsequent recalls. As patients and health care providers weigh the benefits of new remote monitoring technologies against potential safety issues, they should not assume that safety concerns will be readily identifiable through existing post-market surveillance mechanisms. Both health care providers and developers of remote patient monitoring technologies should therefore consider how they might proactively ensure that newly introduced remote patient monitoring technologies work safely and as intended.
Our objective was to explore procedures and methods used at health technology assessment (HTA) agencies for assessing medical devices and the underlying views of HTA practitioners about appropriate methodology to identify challenges in adopting new methodologies for assessing devices. We focused on the role of normative commitments of HTA practitioners in the adoption of new methods.
Methods
An online survey, including questions on procedures, scoping, and assessments of medical devices, was sent to members of the International Network of Agencies for Health Technology Assessment. Interviews were conducted with survey respondents and HTA practitioners involved in assessments of transcatheter aortic valve implantation to gain an in-depth understanding of choices made and views about assessing medical devices. Survey and interview questions were inspired by the “values in doing assessments of health technologies” approach towards HTA, which states that HTA addresses value-laden questions and information.
Results
The current practice of assessing medical devices at HTA agencies is predominantly based on procedures, methods, and epistemological principles developed for assessments of drugs. Both practical factors (available time, demands of decision-makers, existing legal frameworks, and HTA guidelines), as well as commitments of HTA practitioners to principles of evidence-based medicine, make the adoption of a new methodology difficult.
Conclusions
There is a broad recognition that assessments of medical devices may need changes in HTA methodology. In order to realize this, the HTA community may require both a discussion on the role, responsibility, and goals of HTA, and resulting changes in institutional context to adopt new methodologies.
Lack of evidence regarding safety and effectiveness at market entry is driving the need to consider adopting a lifecycle approach to evaluating medical devices, but it is unclear what lifecycle evaluation means. This research sought to explore the tacit meanings of “lifecycle” and “lifecycle evaluation” as embodied within evaluation models/frameworks used for medical devices.
Methods
Drawing on qualitative evidence synthesis methods and using an inductive approach, novel methods were developed to identify, appraise, analyze, and synthesize lifecycle evaluation models used for medical devices. Data was extracted (including purpose; audience; characterization; outputs; timing; and type of model) from key texts for coding, categorization, and comparison, exploring embodied meaning across four broad perspectives.
Results
Fifty-two models were included in the synthesis. They demonstrated significant heterogeneity of meaning, form, scope, timing, and purpose. The “lifecycle” may represent a single stage, a series of stages, a cycle of innovation, or a system. “Lifecycle evaluation” focuses on the overarching goal of the stakeholder group, and may use a single or repeated evaluation to inform decision-making regarding the adoption of health technologies (Healthcare), resource allocation (Policymaking), investment in new product development or marketing (Trade and Industry), or market regulation (Regulation). The adoption of a lifecycle approach by regulators has resulted in the deferral of evidence generation to the post-market phase.
Conclusions
Using a “lifecycle evaluation” approach to inform reimbursement decision-making must not be allowed to further jeopardize evidence generation and patient safety by accepting inadequate evidence of safety and effectiveness for reimbursement decisions.
This article presents the mapping of horizons scanning systems (HSS) for medical devices, conducted by the Medical Devices Working Group of the International Horizon Scanning Initiative (IHSI MDWG). It provides an overview of the identified HSS, highlights similarities and differences between the systems, and lessons learned.
Methods
Potentially relevant HSS were identified through literature searches, scan of an overview of EuroScan members, and input from the IHSI MDWG members. Structured information was collected from organizations that confirmed having an HSS for medical devices.
Results
Sixteen initiatives could be identified, of which 11 are currently ongoing. The purposes of the HSS range from raising awareness of trends and new developments to managing informed decisions on innovative health services in hospitals. The time-horizon is most often 3 years up to a few months before market entry. Three models of identification of new technologies crystallized: a reactive (stakeholders outside HSS inform), a pro-active (actively searching multifold sources), and a hybrid model. Prioritization is often conducted by separate committees via scoring or debate. The outputs focus either on in-depth information of single technologies or on a class of technologies or on technologies in specific disease areas.
Conclusions
The identified HSS share the common experience that horizon scanning (HS) for medical devices is a resource-intensive exercise that requires a dedicated and skilled team. Insights into the identified HSS and their experiences will be used in the continued work of the IHSI MDWG on its proposal for an IHSI HSS for medical devices.
To better understand the process of hospital acquisition of innovative medical devices (MDs) and the hospital-based health technology assessment (HB-HTA) pathways in France, an in-depth study based on a quantitative approach is needed. The aim of the present study was to assess through a national survey how HB-HTA is currently implemented in French hospitals and to identify its level of formalization.
Methods
A quantitative online survey was conducted among hospitals performing HB-HTA in France, with a focus on the acquisition of innovative MDs for individual use. The survey, conducted between March and June 2022, was developed by a scientific board composed of members of the French-speaking Society for HB-HTA.
Results
Sixty-seven out of 131 surveyed hospitals with HB-HTA activities responded, including 29 university hospitals, 24 nonprofit private hospitals, and 14 local hospitals. Sixty-one respondents (91 percent) reported the existence of a process dedicated to evaluating innovative MDs; of these, 16 declared that their hospitals had a formalized unit with HB-HTA activity. These units were more frequently found in larger hospitals with more than 500 inpatient beds (n = 16, p = 0.0160) and in university hospitals (n = 12, p = 0.0158). No hospital reported any collaboration with HAS, the French national HTA agency.
Conclusion
A diverse range of HB-HTA organizations with different structural levels exist in France for MD procurement linked to the category of hospitals. The study highlights the need for recognition of HB-HTA activity at the regulatory level in France and for direct collaboration between HTA activities performed at local and national levels.
In the years following FDA approval of direct-to-consumer, genetic-health-risk/DTCGHR testing, millions of people in the US have sent their DNA to companies to receive personal genome health risk information without physician or other learned medical professional involvement. In Personal Genome Medicine, Michael J. Malinowski examines the ethical, legal, and social implications of this development. Drawing from the past and present of medicine in the US, Malinowski applies law, policy, public and private sector practices, and governing norms to analyze the commercial personal genome sequencing and testing sectors and to assess their impact on the future of US medicine. Written in relatable and accessible language, the book also proposes regulatory reforms for government and medical professionals that will enable technological advancements while maintaining personal and public health standards.
The Food and Drug Administration (FDA) reviews safety, efficacy, and the quality of medical devices through its regulatory process. The FDA Safety and Innovation Act (FDASIA) of 2012 was aimed at accelerating the regulatory process for medical devices.
Objectives:
The purpose of our study was to (1) quantify characteristics of pivotal clinical trials (PCTs) supporting the premarket approval of endovascular medical devices and (2) analyze trends over the last two decades in light of the FDASIA.
Methods:
We surveyed the study designs of endovascular devices with PCTs from the US FDA pre-market approval medical devices database. The effect of FDASIA on key design parameters (e.g., randomization, masking, and number of enrolled patients) was estimated using an interrupted time series analysis (segmented regression).
Results:
We identified 117 devices between 2000–2018. FDASIA was associated with a decrease in double blinding (p < 0.0001) and a decrease in historical comparators (p < 0.0001).
Discussion:
Our results reveal an overall trend of decreased regulatory requirements as it relates to clinical trial characteristics, but a compensatory increased rate of post-approval across device classes. Furthermore, there was an emphasis on proving equivalence or non-inferiority rather than more use of active comparators in clinical trials. Medical device stakeholders, notably clinicians, must be aware of the shifting regulatory landscape in order to play an active role in promoting patient safety.
How do you read a patent and what subject matter is patentable? What is the purpose of a patent? Who is an inventor on the patent if work is done by many people on the project? What is the process of obtaining a patent in my country and globally? Read this chapter to see how you could lose commercialization rights to your own invention. When exactly does an invention or idea become patentable? Once you own a patent, how can you make money from it? What is the process of licensing and the key terms that should be negotiated in such a license agreement? What is the use of a copyright or a trade secret in biotech? What exactly constitutes patent infringement ? These questions and many others are addressed in this chapter on intellectual property.
The vast world of biotechnology applications to human health is reviewed and the terminology used in the rest of the book is defined here. An overview of the industry, the value chains, the specific types of human health products covered in this text are presented in this chapter. A time-tested way to analyze an industry’s attractiveness for new entrants is presented here using Porter’s five forces model. Technology trends such as mobile health, artificial intelligence, 3D printing, cell and gene therapy, and robotics are presented to the reader in the context of the mission of improving human health. The overall process of development of new products in these various segments of drugs, devices and diagnostics sectors is reviewed here. The reader will leave this chapter with a 30,000-foot view of the industry dynamics and understand the context within which product commercialization is to be done.
Within the operating theatre, perioperative practitioners will use a variety of different pieces of equipment to help them carry out their role and care for patients undergoing anaesthesia and surgery. Whether it is checking an anaesthetic machine, handling surgical instruments, or setting up an analgesic pump in the post-anaesthetic care unit, the management of medical equipment requires more understanding than just simply using it. This chapter explores the procurement, use, and maintenance of medical equipment.
Startup companies in the healthcare sector often fail because they lack sufficient entrepreneurial, regulatory, and business development expertise. Maturity models provide useful frameworks to assess the state of business elements more systematically than heuristic assessments. However, previous models were developed primarily to characterize the business state of larger nonmedical companies. A maturity index designed specifically for startup companies in the medical product sector could help to identify areas in which targeted interventions could assist business development.
Methods:
A novel MedTech Startup Maturity Index (SMI) was developed by a collaborative team of academic and industry experts and refined through feedback from external stakeholders. Pediatric medical device startups associated with the West Coast Consortium for Technology & Innovation in Pediatrics (CTIP) were scored and ranked according to the SMI following semi-structured interviews. The CTIP executive team independently ranked the maturity of each company based on their extensive experiences with the same companies.
Results:
SMI scores for 16 companies ranged from 1.2 to 3.8 out of 4. These scores were well aligned with heuristic CTIP rankings for 14 out of 16 companies, reflected by strong correlations between the two datasets (Spearman’s rho = 0.721, P = 0.002, and Kendall’s tau-b = 0.526, P = 0.006).
Conclusions:
The SMI yields maturity scores that correlate well with expert rankings but can be assessed without prior company knowledge and can identify specific areas of concern more systematically. Further research is required to generalize and validate the SMI as a pre-/post-evaluation tool.
This chapter focus on a description of pathways undertaken to transfer the UNCD film technology from the laboratory into the market, through Original Biomedical Implants (OBI-USA) and OBI-México, founded by O. Auciello and colleagues. Topics discussed in this chapter include: 1) Summary of regulatory pathways in different regions of the worldfor approval of medical devices and prostheses; 2) description of pathway to bring to the market a UNCD-coated microchip (artificial retina) implantable inside the eye to restore partial vision to blind people), 2) description of the process to bring to the market a new generation of long life superior performance UNCD-coated prostheses (artificial hips, knees, dental implants, and more); 3) description of pathway to bring into the market a novel retina reattachment process using combined UNCD-coated magnet outside the eye and injection of super-paramagnetic nanoparticles inside the eye, pushing the retina backon to the inner eye’ layer, when attracted by the magnetic field created by the external magnet.
This concluding chapter takes stock of the ways in which the bioinformation governance landscape would look different if it were to embrace the picture of narrative identity impacts, interests, and responsibilities characterised and defended in this book. It proposes that information subjects’ identity-related interests in whether and how they encounter information about their bodies, biology, and health should be firmly installed amongst and routinely weighed alongside the other ethical concerns – such as protecting health, privacy, confidentiality, and autonomy. This does not mean that identity interests should invariably prevail over other ethical, practical, or legal considerations but that they should be afforded weight commensurate with the centrality of an inhabitable, embodied self-narrative to a full, flourishing, and practically engaged life. Mindful of what has been said about the ways in which identity impacts vary between information types and individual circumstances and thus the need for responsive rather than rigid disclosure policies and practices, this chapter proposes priorities for reform in five contexts in which ethical and legal debates about information access are currently pressing. These contexts are donor conception, including mitochondrial donation; return of individual research findings to participants; navigating confidentiality and consent in healthcare; direct-to-consumer genomics; and personal health-tracking devices.
Amputees face challenges with prosthesis such as cost, long delivery periods, as well as social discomfort. Simultaneously, the prosthetists and manufacturers have a difficulty to handle such diverse issues. We thus contribute a Prosthetic Life-Cycle Service System (ProLiSS) Framework, prescribed to involve amputees in different life phases. From an evaluation of ProLiSS, we conclude that it influences how prosthetics need to be designed and that it is beneficial to perform further research to provide manufacturers with a systematic, amputee-centered development and servicing framework.
Over the last decade, the number of connected-to-network medical devices has grown significantly, which is leading to their increased exposure to cyber incidents and attacks. Medical devices’ cybersecurity is of utmost relevance all over the world. The EU legal framework here is heavily characterized by fragmentation and a lack of regulatory guidance. Moreover, legal literature on the topic is scarce, mainly because the regulation of cybersecurity and medical devices is a relatively novel subject. This chapter analyzes the applicable legal framework for cybersecurity of medical devices in the EU and pinpoints the main ethical concerns as well as the relevant regulatory challenges. The chapter introduces the key ethical concerns (i.e., harm to users’ privacy, confidentiality and integrity risks, misuse of personal and health data) and critically assesses the EU legislation regarding medical devices’ cybersecurity (such as the new EU medical devices Regulation, GDPR, NIS Directive, the Cybersecurity Act) respectively applicable to different stakeholders having different obligations. Recommendations on possible ways the stakeholders may approach medical devices’ cybersecurity are drafted with the special attention given to pre/postmarket obligations for manufacturers, the notion of data controllership, requirements applicable to operators of essential services, and the certification schemes relevant for the sector.
The FDA has put guidance in place detailing how it will use RWE while regulating medical devices and published a framework to explain its use of RWE in regulating drugs. Inside the agency, influential officials resist the use of RWE in regulatory decision-making while championing the importance of randomized controlled trials. Outside, a growing body of literature highlights the challenges involved in securing high-quality evidence postapproval. Growing safety concerns about several medical devices — discovered only after real world use — has renewed calls for more rigorous pre and postmarket evaluation
Attempts to modernize and speed up the FDA’s premarketing clearance and classification process for medical devices have included both new device classifications and ways of filing abbreviated applications. The FDA’s “De Novo” classification and Breakthrough Devices program allow applicants to create entirely new medical device types, with special controls and technological characteristics, including specifications on hardware and software. To encourage innovation and competition, the 21st Century Cures Act allows De Novo devices to serve as “predicates” for subsequent follow-on medical devices through the 510(k) application process, if such follow-on devices use the same controls and possess “the same” technological characteristics as the “predicate” device. This lends itself to a potentially anticompetitive strategy mediated by the interaction between IP and the 510(k) application requirements: successful De Novo applicants could use their portfolios to prevent follow-on applicants from making use of similar characteristics – potentially stymying an entire class of follow-on devices in the process. This strategy could threaten a greater diversity of new devices; may encourage an “up” classification of devices; and incentivizes technical characteristics and special controls of De Novo devices where general ones may suffice. This chapter concludes by proposing future evidence-based research in the area.
We incorporate the perspectives of research participants in a clinical trial of DBS for TBI about investigator and sponsor responsibilities with respect to posttrial access to a functioning embedded medical device. We argue that investigators owe a duty of transparency about posttrial access to device maintenance, upgrades, or removal as part of an ongoing informed consent process.