The Cu–Cr system alloys with different Ti contents were prepared and processed by deformation and heat treatment. The microstructures, mechanical, and electrical properties were investigated under as-cast and aged conditions. The results indicate that the Cr precipitates present a dispersed distribution and exhibit a face-centered cubic (fcc) structure rather than equilibrium body-centered cubic (bcc) structure in the initial stage of aging. A certain amount of Ti atoms dissolves in matrix due to the large solid solubility, while the remaining atoms segregate around the interface of the Cr precipitates to form a sandwich structure. Improvement of mechanical properties is achieved with Ti addition and the increasing rolling reduction, which can be ascribed to multiple mechanisms. In addition, Ti has a negative effect on the electrical conductivity, while deformation has a slight effect on conductivity.