We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we discuss the modular properties of quantum field theories of scalar fields that take values in a d-dimensional torus with a flat metric and a constant anti-symmetric tensor. The problem is of great interest in quantum field theory and string theory in view of the fact that such toroidal compactifications admit solutions using free-field theory methods on the worldsheet, preserve Poincaré supersymmetries and may be used to relate different perturbative string theories via T-duality. Toroidal compactifications produce large duality groups, which we shall derive and which generalize the full modular group SL(2,Z). The quantum field theories of toroidal compactification on a worldsheet torus for a singular modulus is shown to be a rational conformal field theory.
In Chapter 3, we introduced SL(2,Z) as the automorphism group of a two-dimensional lattice with an arbitrary modulus. For every value of the modulus, the lattice also possesses a ring of endomorphisms which multiply the lattice by a nonvanishing integer to produce a sublattice of the original lattice. Multiplying the lattice by an arbitrary complex number gives a lattice that will generally not be a sublattice of the original lattice. However, for special values of the modulus, referred to as singular moduli, and associated special values of the complex-valued multiplying factor, the lattice obtained by multiplication will be a sublattice of the original lattice and the ring of endomorphisms will be enlarged. This phenomenon is referred to as complex multiplication. From a mathematics standpoint, various modular forms take on special values at singular moduli, as illustrated by the fact that the j-function is an algebraic integer. From a physics standpoint, the enlargement of the endomorphism ring has arithmetic consequences in conformal field theory, as illustrated by the fact that conformal field theories corresponding to toroidal compactifications at singular moduli are rational conformal field theories as will be discussed in Chapter 13.
We show that for every finite set of prime numbers $S$, there are at most finitely many singular moduli that are $S$-units. The key new ingredient is that for every prime number $p$, singular moduli are $p$-adically disperse. We prove analogous results for the Weber modular functions, the $\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
We prove that the category of (rigidified) Breuil–Kisin–Fargues modules up to isogeny is Tannakian. We then introduce and classify Breuil–Kisin–Fargues modules with complex multiplication mimicking the classical theory for rational Hodge structures. In particular, we compute an avatar of a ‘$p$-adic Serre group’.
Let K be an imaginary quadratic field different from $\open{Q}(\sqrt {-1})$ and $\open{Q}(\sqrt {-3})$. For a positive integer N, let KN be the ray class field of K modulo $N {\cal O}_K$. By using the congruence subgroup ± Γ1(N) of SL2(ℤ), we construct an extended form class group whose operation is basically the Dirichlet composition, and explicitly show that this group is isomorphic to the Galois group Gal(KN/K). We also present an algorithm to find all distinct form classes and show how to multiply two form classes. As an application, we describe Gal(KNab/K) in terms of these extended form class groups for which KNab is the maximal abelian extension of K unramified outside prime ideals dividing $N{\cal O}_K$.
We study abelian varieties and K3 surfaces with complex multiplication defined over number fields of fixed degree. We show that these varieties fall into finitely many isomorphism classes over an algebraic closure of the field of rational numbers. As an application we confirm finiteness conjectures of Shafarevich and Coleman in the CM case. In addition we prove the uniform boundedness of the Galois invariant subgroup of the geometric Brauer group for forms of a smooth projective variety satisfying the integral Mumford–Tate conjecture. When applied to K3 surfaces, this affirms a conjecture of Várilly-Alvarado in the CM case.
We prove the Gross–Deligne conjecture on CM periods for motives associated with ${{H}^{2}}$ of certain surfaces fibered over the projective line. Then we prove for the same motives a formula which expresses the ${{K}_{1}}$-regulators in terms of hypergeometric functions $_{3}{{F}_{2}}$, and obtain a new example of non-trivial regulators.
Colmez [Périodes des variétés abéliennes a multiplication complexe, Ann. of Math. (2)138(3) (1993), 625–683; available at http://www.math.jussieu.fr/∼colmez] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at $s=0$ of certain Artin $L$-functions. In a series of articles we investigate the analog of Colmez’s theory in the arithmetic of function fields. There abelian varieties are replaced by Drinfeld modules and their higher-dimensional generalizations, so-called $A$-motives. In the present article we prove the product formula for the Carlitz module and we compute the valuations of the periods of a CM $A$-motive at all finite places in terms of Artin $L$-series. The latter is achieved by investigating the local shtukas associated with the $A$-motive.
We show that a genus $2$ curve over a number field whose jacobian has complex multiplication will usually have stable bad reduction at some prime. We prove this by computing the Faltings height of the jacobian in two different ways. First, we use a known case of the Colmez conjecture, due to Colmez and Obus, that is valid when the CM field is an abelian extension of the rationals. It links the height and the logarithmic derivatives of an $L$-function. The second formula involves a decomposition of the height into local terms based on a hyperelliptic model. We use the reduction theory of genus $2$ curves as developed by Igusa, Liu, Saito, and Ueno to relate the contribution at the finite places with the stable bad reduction of the curve. The subconvexity bounds by Michel and Venkatesh together with an equidistribution result of Zhang are used to bound the infinite places.
Let $E_{\unicode[STIX]{x1D706}}$ be the Legendre family of elliptic curves. Given $n$ points $P_{1},\ldots ,P_{n}\in E_{\unicode[STIX]{x1D706}}(\overline{\mathbb{Q}(\unicode[STIX]{x1D706})})$, linearly independent over $\mathbb{Z}$, we prove that there are at most finitely many complex numbers $\unicode[STIX]{x1D706}_{0}$ such that $E_{\unicode[STIX]{x1D706}_{0}}$ has complex multiplication and $P_{1}(\unicode[STIX]{x1D706}_{0}),\ldots ,P_{n}(\unicode[STIX]{x1D706}_{0})$ are linearly dependent over End$(E_{\unicode[STIX]{x1D706}_{0}})$. This implies a positive answer to a question of Bertrand and, combined with a previous work in collaboration with Capuano, proves the Zilber–Pink conjecture for a curve in a fibered power of an elliptic scheme when everything is defined over $\overline{\mathbb{Q}}$.
Let $M$ be the Shimura variety associated to the group of spinor similitudes of a quadratic space over $\mathbb{Q}$ of signature $(n,2)$. We prove a conjecture of Bruinier and Yang, relating the arithmetic intersection multiplicities of special divisors and complex multiplication points on $M$ to the central derivatives of certain $L$-functions. Each such $L$-function is the Rankin–Selberg convolution associated with a cusp form of half-integral weight $n/2+1$, and the weight $n/2$ theta series of a positive definite quadratic space of rank $n$. When $n=1$ the Shimura variety $M$ is a classical quaternionic Shimura curve, and our result is a variant of the Gross–Zagier theorem on heights of Heegner points.
We investigate two kinds of Fricke families, those consisting of Fricke functions and those consisting of Siegel functions. In terms of their special values we then generate ray class fields of imaginary quadratic fields over the Hilbert class fields, which are related to the Lang–Schertz conjecture.
We consider Tate cycles on an Abelian variety $A$ defined over a sufficiently large number field $K$ and having complexmultiplication. We show that there is an effective bound $C\,=\,C(A,\,K)$ so that to check whether a given cohomology class is a Tate class on $A$, it suffices to check the action of Frobenius elements at primes $v$ of norm $\le \,C$. We also show that for a set of primes $v$ of $K$ of density 1, the space of Tate cycles on the special fibre ${{A}_{v}}$ of the Néron model of $A$ is isomorphic to the space of Tate cycles on $A$ itself.
Consider a Shimura curve $X_{0}^{D}\left( N \right)$ over the rational numbers. We determine criteria for the twist by an Atkin–Lenher involution to have points over a local field. As a corollary we give a new proof of the theorem of Jordan and Livné on ${{\mathbf{Q}}_{p}}$ points when $p|D$ and for the first time give criteria for ${{\mathbf{Q}}_{p}}$ points when $p|N$. We also give congruence conditions for roots modulo $p$ of Hilbert class polynomials.
Let be a commutative algebraic group defined over a number field K. For a prime ℘ in K where has good reduction, let N℘,n be the number of n-torsion points of the reduction of modulo ℘ where n is a positive integer. When is of dimension one and n is relatively prime to a fixed finite set of primes depending on , we determine the average values of N℘,n as the prime ℘ varies. This average value as a function of n always agrees with a divisor function.
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.
In this paper, we prove a certain maximality property of the Shimura subgroup amongst the multiplicative-type subgroups of $J_0(N)$, and apply this to verify conjectures of Stevens on the existence of certain canonical parametrizations of rational elliptic curves by modular curves. We are also able to verify some of Stevens’s conjectures on the characterization of the elliptic curve in an isogeny class with minimal Faltings–Parshin height.
We prove, assuming the generalized Riemann hypothesis for imaginary quadratic fields, the following special case of a conjecture of Oort, concerning Zarsiski closures of sets of CM points in Shimura varieties. Let X be an irreducible algebraic curve in C$^2$, containing infinitely many points of which both coordinates are j-invariants of CM elliptic curves. Suppose that both projections from X to C are not constant. Then there is an integer m [ges ] 1such that X is the image, under the usual map, of the modular curve Y$_0$(m). The proof uses some number theory and some topological arguments.