We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper is devoted to complete convergence and the strong law of large numbers under moment conditions near those of the law of the single logarithm (LSL) for independent and identically distributed arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than $2p$ for any $p<2$, in which case we know that there is almost sure convergence to 0, and weaker than $E\,X^{4}/(\log ^{+}|X|)^{2}<\infty$, in which case the LSL holds.
This paper considers the histogram of unit cell size built up from m independent observations on a Poisson (μ) distribution. The following question is addressed: what is the limiting probability of the event that there are no unoccupied cells lying to the left of occupied cells of the histogram? It is shown that the probability of there being no such isolated empty cells (or isolated finite groups of empty cells) tends to unity as the number m of observations tends to infinity, but that the corresponding almost sure convergence fails. Moreover this probability does not tend to unity when the Poisson distribution is replaced by the negative binomial distribution arising when μ is randomized by a gamma distribution. The relevance to empirical Bayes statistical methods is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.