No CrossRef data available.
Published online by Cambridge University Press: 14 July 2016
This paper considers the histogram of unit cell size built up from m independent observations on a Poisson (μ) distribution. The following question is addressed: what is the limiting probability of the event that there are no unoccupied cells lying to the left of occupied cells of the histogram? It is shown that the probability of there being no such isolated empty cells (or isolated finite groups of empty cells) tends to unity as the number m of observations tends to infinity, but that the corresponding almost sure convergence fails. Moreover this probability does not tend to unity when the Poisson distribution is replaced by the negative binomial distribution arising when μ is randomized by a gamma distribution. The relevance to empirical Bayes statistical methods is discussed.