We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove the existence of topologically non-trivial solutions of the two-dimensional Adkins–Nappi model of nuclear physics; to this end, we minimize the energy functional by using the classical Skyrme ansatz, as well as a non-radially symmetric generalization of it. In both cases, we show that the minimization procedure preserves the topological degree of the minimization sequence.
In this paper, we study the existence of positive solutions to a semilinear nonlocal elliptic problem with the fractional α-Laplacian on Rn, 0 < α < n. We show that the problem has infinitely many positive solutions in $ {C^\tau}({R^n})\bigcap H_{loc}^{\alpha /2}({R^n}) $. Moreover, each of these solutions tends to some positive constant limit at infinity. We can extend our previous result about sub-elliptic problem to the nonlocal problem on Rn. We also show for α ∊ (0, 2) that in some cases, by the use of Hardy’s inequality, there is a nontrivial non-negative $ H_{loc}^{\alpha /2}({R^n}) $ weak solution to the problem
We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0,λ*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concave–convex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
This paper deals with periodic solutions for the billiard problem in a bounded open set of ${{\mathbb{R}}^{N}}$ which are limits of regular solutions of Lagrangian systems with a potential well. We give a precise link between the Morse index of approximate solutions (regarded as critical points of Lagrangian functionals) and the properties of the bounce trajectory to which they converge.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.