This paper deals with the concepts of condensed and strongly condensed domains. By definition, an integral domain $R$ is condensed (resp. strongly condensed) if each pair of ideals $I$ and $J$ of $R$, $IJ\,=\,\{ab/a\,\in \,I,\,b\,\in \,J\}$ (resp. $IJ\,=\,aJ$ for some $a\,\in \,I\,or\,I\,J\,=\,Ib$ for some $b\,\in \,J$). More precisely, we investigate the ideal theory of condensed and strongly condensed domains in Noetherian-like settings, especially Mori and strong Mori domains and the transfer of these concepts to pullbacks.