Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:36:07.020Z Has data issue: false hasContentIssue false

Becoming an expert: Ontogeny of expertise as an example of neural reuse

Published online by Cambridge University Press:  30 June 2016

Alessandro Guida
Affiliation:
Department of Psychology, Université Rennes 2, Rennes, 35043 Rennes Cedex, France. [email protected]://alessandro-guida.blogspot.fr/
Guillermo Campitelli
Affiliation:
School of Psychology and Social Science, Edith Cowan University, Perth WA6027, Australia. [email protected]://gcampitelli.com
Fernand Gobet
Affiliation:
Institute of Psychology, Health and Society, University of Liverpool, Liverpool L69 7ZA, United Kingdom. [email protected]://www.chrest.info/fg/home.htm

Abstract

In this commentary, we discuss an important pattern of results in the literature on the neural basis of expertise: (a) decrease of cerebral activation at the beginning of acquisition of expertise and (b) functional cerebral reorganization as a consequence of years of practice. We show how these two results can be integrated with the neural reuse framework.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamse, E., van Dijck, J.-P., Majerus, S. & Fias, W. (2014) Finding the answer in space: The mental whiteboard hypothesis on serial order in working memory. Frontiers in Human Neuroscience 8:932.CrossRefGoogle ScholarPubMed
Anderson, M. L. (2014) After phrenology: Neural reuse and the interactive brain. MIT Press.CrossRefGoogle Scholar
Burgess, N., Maguire, E. A. & O'Keefe, J. (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–41.Google Scholar
Campitelli, G., Gobet, F., Head, K., Buckley, M. & Parker, A. (2007) Brain localisation of memory chunks in chessplayers. International Journal of Neuroscience 117:1641–59.Google Scholar
Chase, W. G. & Simon, H. A. (1973) Perception in chess. Cognitive Psychology 4:5581.Google Scholar
Chen, Z. & Cowan, N. (2005) Chunk limits and length limits in immediate recall: A reconciliation. Journal of Experimental Psychology: Learning, Memory, and Cognition 31:1235–49.Google Scholar
Cowan, N. (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24:87185.Google Scholar
Cowan, N. (2011) The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia 49:1401–406.Google Scholar
Cowan, N., Chen, Z. & Rouder, J. N. (2004) Constant capacity in an immediate serial-recall task: A logical sequel to Miller (1956). Psychological Science 15:634–40.Google Scholar
Ericsson, K. A. & Kintsch, W. (1995) Long-term working memory. Psychological Review 102:211–45.Google Scholar
Gobet, F. (2000a) Retrieval structures and schemata: A brief reply to Ericsson and Kintsch. British Journal of Psychology 91:591–94.CrossRefGoogle Scholar
Gobet, F. (2000b) Some shortcomings of long-term working memory. British Journal of Psychology 91:551–70.Google Scholar
Gobet, F., Lane, P. C. R., Croker, S. C. H., Cheng, P., Jones, G., Oliver, I. & Pine, J. M. (2001) Chunking mechanisms in human learning. Trends in Cognitive Science 5:236–43.Google Scholar
Gobet, F. & Simon, H. A. (1996) Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology 31:140.Google Scholar
Guida, A., Gobet, F. & Nicolas, S. (2013) Functional cerebral reorganization: A signature of expertise? Reexamining Guida, Gobet, Tardieu, and Nicolas' (2012) two-stage framework. Frontiers in Human Neuroscience 7:590.Google Scholar
Guida, A., Gobet, F., Tardieu, H. & Nicolas, S. (2012) How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain and Cognition 79:221–44.Google Scholar
Guida, A. & Lavielle-Guida, M. (2014) 2011 space odyssey: Spatialization as a mechanism to code order allows a close encounter between memory expertise and classic immediate memory studies. Frontiers in Psychology 5:573.Google Scholar
Guida, A., Leroux, A., Lavielle-Guida, M. & Noël, Y. (2015) A SPoARC in the dark: Spatialization in verbal immediate memory. Cognitive Science. doi: 10.1111/cogs.12316.Google Scholar
Maguire, E. A., Valentine, E. R., Wilding, J. M. & Kapur, N. (2003) Routes to remembering: The brains behind superior memory. Nature Neuroscience 6:9095.Google Scholar
Mathy, F. & Feldman, J. (2012) What's magic about magic numbers. Chunking and data compression in short-term memory. Cognition 122:346–62.Google Scholar
Merabet, L. B., Hamilton, R., Schlaug, G., Swisher, J. D., Kiriakapoulos, E. T., Pitskel, N. B., Kauffman, T. & Pascual-Leone, A. (2008) Rapid and reversible recruitment of early visual cortex for touch. PLoS One 3(8):e3046: 112.Google Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., Seron, X., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nature Neuroscience 4:103107.Google Scholar
Petersen, S. E., van Mier, H., Fiez, J. A. & Raichle, M. E. (1998) The effects of practice on the functional anatomy of task-performance. Proceedings of the National Academy of Sciences of the United States of America 95:853–60.Google Scholar
Petersson, K. M., Elfgren, C. & Ingvar, M. (1997) A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. NeuroImage 6:111.Google Scholar
Poldrack, R. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1998) The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex 8:110.Google Scholar
Postle, B. R., Berger, J. S. & D'Esposito, M. (1999) Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proceedings of the National Academy of Sciences of the United States of America 96:12959–64.CrossRefGoogle ScholarPubMed
Postle, B. R. & D'Esposito, M. (1999) “What”-then-“Where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience 11:585–97.Google Scholar
Pridmore, B. (2013) How to be clever. Lulu Press.Google Scholar
Todd, J. J. & Marois, R. (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751–54.Google Scholar
van Dijck, J. P. & Fias, W. (2011) A working memory account for spatial-numerical associations. Cognition 119:114–19.Google Scholar
Vogel, E. K. & Machizawa, M. G. (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–51.Google Scholar
Worthen, J. B. & Hunt, R. R. (2011) Mnemonology: Mnemonics for the 21st century. Psychology Press.Google Scholar
Yates, F. A. (1966) The art of memory. University of Chicago Press.Google Scholar