No CrossRef data available.
Article contents
Reason for optimism: How a shifting focus on neural population codes is moving cognitive neuroscience beyond phrenology
Published online by Cambridge University Press: 30 June 2016
Abstract
Multivariate pattern analysis can address many of the challenges for cognitive neuroscience highlighted in After Phrenology (Anderson 2014) by illuminating the information content of brain regions and by providing insight into whether functional overlap reflects the recruitment of common or distinct computational mechanisms. Further, failing to consider submaximal but reliable population responses can lead to an overly modular account of brain function.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2016
References
Anderson, M. L. (2010) Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences
33(4):245–66. doi: 10.1017/S0140525X10000853.Google Scholar
Anderson, M. L. (2014) After phrenology: Neural reuse and the interactive brain. MIT Press.Google Scholar
Chang, S. W. C., Brent, L. J. N., Adams, G. K., Klein, J. T., Pearson, J. M., Watson, K. K. & Platt, M. L. (2013) Neuroethology of primate social behavior. Proceedings of the National Academy of Sciences of the United States of America
110(Suppl.):10387–94. doi: 10.1073/pnas.1301213110.CrossRefGoogle ScholarPubMed
Connolly, A. C., Gobbini, M. I. & Haxby, J. V. (2012) Three virtues of similarity-based multivariate pattern analysis: An example from the human object vision pathway. In: Understanding visual population codes: Toward a common multivariate framework for cell recording and functional imaging, ed. Kriegeskorte, N. & Kreiman, G., pp. 335–55. MIT Press.Google Scholar
Dehaene, S. & Cohen, L. (2007) Cultural recycling of cortical maps. Neuron
56(2):384–98. doi: 10.1016/j.neuron.2007.10.004.CrossRefGoogle ScholarPubMed
Georgopoulos, A., Kettner, R. & Schwartz, A. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. Journal of Neuroscience
8(8):2928–37.CrossRefGoogle ScholarPubMed
Haxby, J. V, Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L. & Pietrini, P. (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science
293(5539):2425–30. doi: 10.1126/science.1063736.Google Scholar
Knops, A., Thirion, B., Hubbard, E. M., Michel, V. & Dehaene, S. (2009) Recruitment of an area involved in eye movements during mental arithmetic. Science
324(5934):1583–85. doi: 10.1126/science.1171599.Google Scholar
Kriegeskorte, N., Mur, M. & Bandettini, P. (2008a) Representational similarity analysis: Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience
2:4. doi: 10.3389/neuro.06.004.2008.Google Scholar
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K. & Bandettini, P. A. (2008b) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron
60(6):1126–41. doi: 10.1016/j.neuron.2008.10.043.CrossRefGoogle ScholarPubMed
Lin, L., Osan, R. & Tsien, J. Z. (2006) Organizing principles of real-time memory encoding: Neural clique assemblies and universal neural codes. Trends in Neurosciences
29(1):48–57. doi: 10.1016/j.tins.2005.11.004.Google Scholar
Marcus, G. F. (2006) Cognitive architecture and descent with modification. Cognition
101(2):443–65. doi: 10.1016/j.cognition.2006.04.009.Google Scholar
Parkinson, C., Liu, S. & Wheatley, T. (2014) A common cortical metric for spatial, temporal, and social distance. Journal of Neuroscience
34(5):1979–87. doi: 10.1523/JNEUROSCI.2159-13.2014.Google Scholar
Parkinson, C. & Wheatley, T. (2013) Old cortex, new contexts: Re-purposing spatial perception for social cognition. Frontiers in Human Neuroscience
7:645. doi: 10.3389/fnhum.2013.00645.Google Scholar
Parkinson, C. & Wheatley, T. (2015) The repurposed social brain. Trends in Cognitive Sciences
19(3):133–41. doi: 10.1016/j.tics.2015.01.003.Google Scholar
Peelen, M. V. & Downing, P. E. (2007) Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends in Cognitive Sciences
11(1):4–5. doi: 10.1016/j.tics.2006.10.009.CrossRefGoogle ScholarPubMed
Pouget, A., Dayan, P. & Zemel, R. (2000) Information processing with population codes. Nature Reviews Neuroscience
1(2):125–32. doi: 10.1038/35039062.CrossRefGoogle ScholarPubMed
Simon, S. A., de Araujo, I. E., Gutierrez, R. & Nicolelis, M. A. L. (2006) The neural mechanisms of gustation: A distributed processing code. Nature Reviews Neuroscience
7(11):890–901. doi: 10.1038/nrn2006.Google Scholar
Target article
Précis of After Phrenology: Neural Reuse and the Interactive Brain
Related commentaries (14)
A registration problem for functional fingerprinting
After phrenology: Time for a paradigm shift in cognitive science
Becoming an expert: Ontogeny of expertise as an example of neural reuse
Beyond disjoint brain networks: Overlapping networks for cognition and emotion
Computational specificity in the human brain
Modularity in network neuroscience and neural reuse
Multisensory integration substantiates distributed and overlapping neural networks
Neural reuse leads to associative connections between concrete (physical) and abstract (social) concepts and motives
Reason for optimism: How a shifting focus on neural population codes is moving cognitive neuroscience beyond phrenology
Scientific intuitions about the mind are wrong, misled by consciousness
The implications of neural reuse for the future of both cognitive neuroscience and folk psychology
The reification objection to bottom-up cognitive ontology revision
Toward mechanistic models of action-oriented and detached cognition
Why a developmental perspective is critical for understanding human cognition
Author response
Reply to reviewers: Reuse, embodied interactivity, and the emerging paradigm shift in the human neurosciences