Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T05:33:26.196Z Has data issue: false hasContentIssue false

Mathematical fixation: Search viewed through a cognitive lens

Published online by Cambridge University Press:  24 May 2017

Steven Phillips
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6-11, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. [email protected]@aist.go.jphttps://staff.aist.go.jp/steven.phillipshttps://staff.aist.go.jp/yuji-takeda
Yuji Takeda
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6-11, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. [email protected]@aist.go.jphttps://staff.aist.go.jp/steven.phillipshttps://staff.aist.go.jp/yuji-takeda

Abstract

We provide a mathematical category theory account of the size and location of the authors' Functional View Field (FVF). Category theory explains systematic cognitive ability via universal construction, that is, a necessary and sufficient condition for composition of cognitive processes. Similarly, FVF size and location is derived from a (universal) construction called a fibre (pullback) bundle.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizawa, K. (2003) The systematicity arguments. Kluwer Academic.CrossRefGoogle Scholar
Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.Google Scholar
Fodor, J. A. & Pylyshyn, Z. W. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28(1–2):371.Google Scholar
Gentner, D. (1983) Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2):4759.Google Scholar
Husemoller, D. (1994) Fibre bundles, third edition. Springer-Verlag.CrossRefGoogle Scholar
Johnson, M., Rosebrugh, R. & Wood, R. (2012) Lenses, fibrations and universal translations. Mathematical Structures in Computer Science 22:2542.Google Scholar
Mac Lane, S. (1998) Categories for the working mathematician, second edition. Springer.Google Scholar
Phillips, S. (2014) Analogy, cognitive architecture and universal construction: A tale of two systematicities. PLoS ONE 9(2):e89152.Google Scholar
Phillips, S., Takeda, Y. & Singh, A. (2012) Visual feature integration indicated by phase-locked frontal-parietal EEG signals. PLoS ONE 7(3):e32502.Google Scholar
Phillips, S. & Wilson, W. H. (2010) Categorial compositionality: A category theory explanation for the systematicity of human cognition. PLoS Computational Biology 6(7):e1000858.Google Scholar
Phillips, S. & Wilson, W. H. (2011) Categorial compositionality II: Universal constructions and a general theory of (quasi-)systematicity in human cognition. PLoS Computational Biology 7(8):e1002102.Google Scholar
Phillips, S. & Wilson, W. H. (2012) Categorial compositionality III: F-(co)algebras and the systematicity of recursive capacities in human cognition. PLoS ONE 7(4):e35028.Google Scholar
van Gelder, T. (1990) Compositionality: A connectionist variation on a classical theme. Cognitive Science 14:355–84.Google Scholar
Wolfe, J. M., Cave, K. R. & Franzel, S. L. (1989) Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance 15(3):419–33.Google Scholar
Zelinsky, G. J., Adeli, H., Peng, Y. & Samaras, D. (2013) Modelling eye movements in a categorical search task. Philosophical Transactions of the Royal Society of London B: Biological Sciences 368(1628):20130058.Google Scholar