No CrossRef data available.
Article contents
The “item” as a window into how prior knowledge guides visual search
Published online by Cambridge University Press: 24 May 2017
Abstract
We challenge the central idea proposed in Hulleman & Olivers (H&O) by arguing that the “item” is still useful for understanding visual search and for developing new theoretical frameworks. The “item” is a flexible unit that represents not only an individual object, but also a bundle of objects that are grouped based on prior knowledge. Uncovering how the “item” is represented based on prior knowledge is essential for advancing theories of visual search.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
Brady, T. F., Konkle, T. & Alvarez, G. A. (2009) Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General
138:487–502.Google Scholar
Brady, T. F., Konkle, T. & Alvarez, G. A. (2011) A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision
11:1–34.CrossRefGoogle ScholarPubMed
Fiser, J. & Aslin, R. N. (2001) Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science
12:499–504.CrossRefGoogle ScholarPubMed
Fiser, J. & Aslin, R. N. (2002) Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences of the United States of America
99(24):15822–26.Google Scholar
Hall, M., Mattingley, J. & Dux, P. (2015) Distinct contributions of attention and working memory to visual statistical learning and ensemble processing. Journal of Experimental Psychology: Human Perception and Performance
41:1112–23.Google ScholarPubMed
Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. (2002) Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition
83:B35–42.CrossRefGoogle ScholarPubMed
Mole, C. & Zhao, J. (2016) Vision and abstraction: An empirical refutation of Nico Orlandi's non-cognitivism. Philosophical Psychology
29:365–73.CrossRefGoogle Scholar
Nako, R., Smith, T. J. & Eimer, M. (2015) Activation of new attentional templates for real-world objects in visual search. Journal of Cognitive Neuroscience
27:902–12.CrossRefGoogle ScholarPubMed
Nako, R., Wu, R. & Eimer, M. (2014a) Rapid guidance of visual search by object categories. Journal of Experimental Psychology: Human Perception and Performance
40(1):50–60.Google Scholar
Nako, R., Wu, R., Smith, T. J. & Eimer, M. (2014b) Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans?
Journal of Experimental Psychology: Human Perception and Performance
40(4):1283–88.Google Scholar
Olivers, C. N., Peters, J., Houtkamp, R. & Roelfsema, P. R. (2011) Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences
15(7):327–34.Google Scholar
Saffran, J. R., Aslin, R. N. & Newport, E. L. (1996) Statistical learning by 8-month-old infants. Science
274:1926–28.Google Scholar
Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. (2012) Shaping of object representations in the human medial temporal lobe based on temporal regularities. Current Biology
22:1622–27.CrossRefGoogle ScholarPubMed
Turk-Browne, N. B., Jungé, J. A. & Scholl, B. J. (2005) The automaticity of visual statistical learning. Journal of Experimental Psychology: General
134:552–64.CrossRefGoogle ScholarPubMed
Wu, R., Gopnik, A., Richardson, D. C. & Kirkham, N. Z. (2011) Infants learn about objects from statistics and people. Developmental Psychology
47(5):1220–29.CrossRefGoogle ScholarPubMed
Wu, R., Nako, R., Band, J., Pizzuto, J., Shadravan, Y., Scerif, G. & Aslin, R. N. (2015) Rapid selection of non-native stimuli despite perceptual narrowing. Journal of Cognitive Neuroscience
27(11):2299–307.Google Scholar
Wu, R., Pruitt, Z., Runkle, M., Scerif, G. & Aslin, R. N. (2016) A neural signature of rapid category-based target selection as a function of intra-item perceptual similarity despite inter-item dissimilarity. Attention Perception and Psychophysics
78(3):749–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26732265.CrossRefGoogle ScholarPubMed
Wu, R., Pruitt, Z., Zinszer, B. & Cheung, O. (2017) Increased experience amplifies the activation of task-irrelevant category representations. Attention, Perception, and Psychophysics
79(2):522–32.Google Scholar
Wu, R., Scerif, G., Aslin, R. N., Smith, T. J., Nako, R. & Eimer, M. (2013) Searching for something familiar or novel: Top-down attentional selection of specific items or object categories. Journal of Cognitive Neuroscience
25(5):719–29.CrossRefGoogle ScholarPubMed
Yu, R. & Zhao, J. (2015) The persistence of attentional bias to regularities in a changing environment. Attention, Perception, and Psychophysics
77:2217–28.CrossRefGoogle Scholar
Zhao, J., Al-Aidroos, N. & Turk-Browne, N. B. (2013) Attention is spontaneously biased toward regularities. Psychological Science
24:667–77.CrossRefGoogle ScholarPubMed
Zhao, J. & Luo, Y. (2014) Statistical regularities alter the spatial scale of attention. Journal of Vision
14(10):11.Google Scholar
Zhao, J., Ngo, N., McKendrick, R. & Turk-Browne, N. B. (2011) Mutual interference between statistical summary perception and statistical learning. Psychological Science
22:1212–19.Google Scholar
Zhao, J. & Yu, R. (2016) Statistical regularities reduce perceived numerosity. Cognition
146:217–22.Google Scholar
Target article
The impending demise of the item in visual search
Related commentaries (30)
An appeal against the item's death sentence: Accounting for diagnostic data patterns with an item-based model of visual search
Analysing real-world visual search tasks helps explain what the functional visual field is, and what its neural mechanisms are
Chances and challenges for an active visual search perspective
Cognitive architecture enables comprehensive predictive models of visual search
Contextual and social cues may dominate natural visual search
Don't admit defeat: A new dawn for the item in visual search
Eye movements are an important part of the story, but not the whole story
Feature integration, attention, and fixations during visual search
Fixations are not all created equal: An objection to mindless visual search
Gaze-contingent manipulation of the FVF demonstrates the importance of fixation duration for explaining search behavior
How functional are functional viewing fields?
Item-based selection is in good shape in visual compound search: A view from electrophysiology
Looking further! The importance of embedding visual search in action
Mathematical fixation: Search viewed through a cognitive lens
Oh, the number of things you will process (in parallel)!
Parallel attentive processing and pre-attentive guidance
Scanning movements during haptic search: similarity with fixations during visual search
Searching for unity: Real-world versus item-based visual search in age-related eye disease
Set size slope still does not distinguish parallel from serial search
Task implementation and top-down control in continuous search
The FVF framework and target prevalence effects
The FVF might be influenced by object-based attention
The “item” as a window into how prior knowledge guides visual search
Those pernicious items
Until the demise of the functional field of view
What fixations reveal about oculomotor scanning behavior in visual search
Where the item still rules supreme: Time-based selection, enumeration, pre-attentive processing and the target template?
Why the item will remain the unit of attentional selection in visual search
“I am not dead yet!” – The Item responds to Hulleman & Olivers
“Target-absent” decisions in cancer nodule detection are more efficient than “target-present” decisions!
Author response
On the brink: The demise of the item in visual search moves closer