Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T14:05:31.952Z Has data issue: false hasContentIssue false

Cultural dynamics add multiple layers of complexity to behavioural genetics

Published online by Cambridge University Press:  13 September 2022

Laurel Fogarty
Affiliation:
Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, [email protected]; https://www.eva.mpg.de/ecology/staff/laurel-fogarty/index.html
Nicole Creanza
Affiliation:
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA. [email protected]; http://nicolecreanza.com

Abstract

As emphasized in early cultural evolutionary theory, understanding heritability of human traits – especially, behavioural traits – is difficult. The target article describes important ways that culture can enhance, or obscure, signatures of heritability in genetic studies. Here, we discuss the utility of calculating heritability for behavioural traits influenced by cultural evolution and point to conceptual and technical complications to consider in future models.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution; International Journal of Organic Evolution, 62(10), 24512461. https://doi.org/10.1111/j.1558-5646.2008.00472.x.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., & Feldman, M. W. (1973a). Cultural versus biological inheritance: Phenotypic transmission from parents to children (A theory of the effect of parental phenotypes on children's phenotypes). American Journal of Human Genetics, 25(6), 618. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762580/.Google Scholar
Cavalli-Sforza, L. L., & Feldman, M. W. (1973b). Models for cultural inheritance I. Group mean and within group variation. Theoretical Population Biology, 4, 4255.CrossRefGoogle Scholar
Creanza, N., & Feldman, M. W. (2014). Complexity in models of cultural niche construction with selection and homophily. Proceedings of the National Academy of Sciences of the United States of America, 111(3), 1083010837.CrossRefGoogle ScholarPubMed
Creanza, N., Fogarty, L., & Feldman, M. W. (2012). Models of cultural niche construction with selection and assortative mating. PLoS ONE, 7(8), e42744. https://doi.org/10.1371/journal.pone.0042744.CrossRefGoogle ScholarPubMed
Danchin, É., & Wagner, R. H. (2010). Inclusive heritability: Combining genetic and non-genetic information to study animal behavior and culture. Oikos, 119(2), 210218. https://doi.org/10.1111/j.1600-0706.2009.17640.x.CrossRefGoogle Scholar
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Fongman.Google Scholar
Feldman, M. W., & Lewontin, R. C (1975). The heritability hang-up. Science (New York, N.Y.), 190(4220), 11631168.CrossRefGoogle ScholarPubMed
Feldman, M. W., & Ramachandran, S. (2018). Missing compared to what? Revisiting heritability, genes and culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743). https://doi.org/10.1098/rstb.2017.0064.CrossRefGoogle ScholarPubMed
Feldman, M. W., & Zhivotovsky, L. A. (1992). Gene–culture coevolution: Toward a general theory of vertical transmission. Proceedings of the National Academy of Sciences of the United States of America, 89(24), 1193511938. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=50672&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
Fogarty, L., Creanza, N., & Feldman, M. W. (2013). The role of cultural transmission in human demographic change: An age-structured model. Theoretical Population Biology, 88, 6877. https://doi.org/10.1016/j.tpb.2013.06.006.CrossRefGoogle Scholar
Fogarty, L., Creanza, N., & Feldman, M. W. (2019). The life history of learning: Demographic structure changes cultural outcomes. PLoS Computational Biology, 15(4), e1006821. https://doi.org/10.1371/journal.pcbi.1006821.CrossRefGoogle ScholarPubMed
Gilpin, W., & Feldman, M. W. (2019). Cryptic selection forces and dynamic heritability in generalized phenotypic evolution. Theoretical Population Biology, 125, 2029. https://doi.org/10.1016/j.tpb.2018.11.002.CrossRefGoogle ScholarPubMed
Karlin, S. (1988). Non-Gaussian phenotypic models of quantitative traits. In Eisen, E. J., Goodman, M. M., Namkoong, G., & Weir, B. S., (Eds.), The Second International Conference on Quantitative Genetics (pp. 123144). Sinauer.Google Scholar
Laland, K. N., Kumm, J., & Feldman, M. W. (1995). Gene–culture coevolutionary theory: A test case. Current Anthropology, 36(1), 131156. Retrieved from http://www.sciencedirect.com/science/article/pii/0169534796100525.CrossRefGoogle Scholar
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution, 33(1), 402416.Google ScholarPubMed
Lewontin, R. C. (1974). The analysis of variance and the analysis of causes. American Journal of Human Genetics, 26, 400411. https://doi.org/10.1093/ije/dyl062.Google ScholarPubMed
Schluter, D. (1984). Morphological and phylogenetic relations among the Darwin's finches. Evolution, 38(5), 921930. https://doi.org/10.1111/j.1558-5646.1984.tb00363.x.CrossRefGoogle ScholarPubMed
Turelli, M. (1988). Phenotypic evolution, constant covariances, and the maintenance of additive variance, 42(6), 13421347.Google ScholarPubMed
de Villemereuil, P., Schielzeth, H., Nakagawa, S., & Morrissey, M. (2016). General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics, 204(3), 12811294. https://doi.org/10.1534/genetics.115.186536.CrossRefGoogle ScholarPubMed