Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:44:48.411Z Has data issue: false hasContentIssue false

Cultural evolution may influence heritability by shaping assortative mating

Published online by Cambridge University Press:  13 September 2022

Tian Chen Zeng
Affiliation:
Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. [email protected] [email protected]
Joseph Henrich
Affiliation:
Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. [email protected] [email protected]

Abstract

Uchiyama et al. productively discuss how culture can influence genetic heritability and, by modifying environmental conditions, limit the generalizability of genome-wide association studies (GWASs). Here, we supplement their account by highlighting how recent changes in culture and institutions in industrialized, westernized societies – such as increased female workforce participation – may have increased assortative mating. This alters the distribution of genotypes themselves, increasing heritability and phenotypic variance, and may be detectable using the latest methods.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, V., Böckerman, P., Viinikainen, J., Smart, M. C., Bao, Y., Kumari, M., … Pehkonen, J. (2017). Gene–environment interactions between education and body mass: Evidence from the UK and Finland. Social Science & Medicine, 195, 1216.CrossRefGoogle Scholar
Ancestry.com. (September 7, 2020). Does Distance Make the Heart Grow Fonder? Ancestry Blog. blogs.ancestry.com/cm/does-distance-make-the-heart-grow-fonder/. Archived at https://archive.li/nMtBQ.Google Scholar
Bansal, V., Mitjans, M., Burik, C. A., Linner, R. K., Okbay, A., Rietveld, C. A., … Koellinger, P. D. (2018). Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nature Communications, 9(1), 112.CrossRefGoogle ScholarPubMed
Breen, R., & Andersen, S. H. (2012). Educational assortative mating and income inequality in Denmark. Demography, 49(3), 867887.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., & Feldman, M. W. (1973). Cultural versus biological inheritance: Phenotypic transmission from parents to children. (A theory of the effect of parental phenotypes on children's phenotypes). American Journal of Human Genetics, 25(6), 618.Google Scholar
Daysal, N. M., Elder, T. E., Hellerstein, J. K., Imberman, S. A., & Orsini, C. (2021). Parental Skills, Assortative Mating, and the Incidence of Autism Spectrum Disorder.CrossRefGoogle Scholar
Demange, P. A., Malanchini, M., Mallard, T. T., Biroli, P., Cox, S. R., Grotzinger, A. D., … Nivard, M. G. (2021). Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nature Genetics, 53(1), 3544.CrossRefGoogle ScholarPubMed
Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108(2), 346.CrossRefGoogle ScholarPubMed
Eika, L., Mogstad, M., & Zafar, B. (2019). Educational assortative mating and household income inequality. Journal of Political Economy, 127(6), 27952835.CrossRefGoogle Scholar
Gauderman, W. J., Mukherjee, B., Aschard, H., Hsu, L., Lewinger, J. P., Patel, C. J., … Chatterjee, N. (2017). Update on the state of the science for analytical methods for gene–environment interactions. American Journal of Epidemiology, 186(7), 762770.CrossRefGoogle ScholarPubMed
Greenwood, J., Guner, N., Kocharkov, G., & Santos, C. (2014). Marry your like: Assortative mating and income inequality. American Economic Review, 104(5), 348353.CrossRefGoogle Scholar
Henrich, J., & McElreath, R. (2007). Dual-inheritance theory: The evolution of human cultural capacities and cultural evolution. In R. Dunbar & L. Barrett (Eds.), Oxford handbook of evolutionary psychology (pp. 555–570). Oxford University Press.Google Scholar
Keller, M. C., Garver-Apgar, C. E., Wright, M. J., Martin, N. G., Corley, R. P., Stallings, M. C., … Zietsch, B. P. (2013). The genetic correlation between height and IQ: Shared genes or assortative mating?. PLoS Genetics, 9(4), e1003451.CrossRefGoogle ScholarPubMed
Laland, K. N., Brown, G. R., & Brown, G. (2011). Sense and nonsense: Evolutionary perspectives on human behaviour. Oxford University Press.Google Scholar
Maas, I., & Zijdeman, R. L. (2010). Beyond the local marriage market: The influence of modernization on geographical heterogamy. Demographic Research, 23, 933962.CrossRefGoogle Scholar
MacCabe, J. H., Sariaslan, A., Almqvist, C., Lichtenstein, P., Larsson, H., & Kyaga, S. (2018). Artistic creativity and risk for schizophrenia, bipolar disorder and unipolar depression: A Swedish population-based case–control study and sib-pair analysis. The British Journal of Psychiatry, 212(6), 370376.CrossRefGoogle ScholarPubMed
Nordsletten, A. E., Larsson, H., Crowley, J. J., Almqvist, C., Lichtenstein, P., & Mataix-Cols, D. (2016). Patterns of nonrandom mating within and across 11 major psychiatric disorders. JAMA Psychiatry, 73(4), 354361.CrossRefGoogle ScholarPubMed
Parnas, J., Sandsten, K. E., Vestergaard, C. H., & Nordgaard, J. (2019). Schizophrenia and bipolar illness in the relatives of university scientists: An epidemiological report on the creativity-psychopathology relationship. Frontiers in Psychiatry, 10, 175.CrossRefGoogle ScholarPubMed
Peyrot, W. J., Robinson, M. R., Penninx, B. W., & Wray, N. R. (2016). Exploring boundaries for the genetic consequences of assortative mating for psychiatric traits. JAMA Psychiatry, 73(11), 11891195.CrossRefGoogle ScholarPubMed
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18(7), 953955.CrossRefGoogle ScholarPubMed
Rask-Andersen, M., Karlsson, T., Ek, W. E., & Johansson, Å. (2017). Gene–environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genetics, 13(9), e1006977.CrossRefGoogle ScholarPubMed
Roelfsema, M. T., Hoekstra, R. A., Allison, C., Wheelwright, S., Brayne, C., Matthews, F. E., & Baron-Cohen, S. (2012). Are autism spectrum conditions more prevalent in an information-technology region? A school-based study of three regions in the Netherlands. Journal of Autism and Developmental Disorders, 42(5), 734739.CrossRefGoogle Scholar
Rosenfeld, M. J., Thomas, R. J., & Hausen, S. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting. Proceedings of the National Academy of Sciences, 116(36), 1775317758.CrossRefGoogle ScholarPubMed
Ruzich, E., Allison, C., Chakrabarti, B., Smith, P., Musto, H., Ring, H., & Baron-Cohen, S. (2015). Sex and STEM occupation predict autism-spectrum quotient (AQ) scores in half a million people. PLoS ONE, 10(10), e0141229.CrossRefGoogle ScholarPubMed
Wild, C. P. (2012). The exposome: From concept to utility. International Journal of Epidemiology, 41(1), 2432.CrossRefGoogle ScholarPubMed