No CrossRef data available.
Article contents
Random isn't real: How the patchy distribution of ecological rewards may generate “incentive hope”
Published online by Cambridge University Press: 19 March 2019
Abstract
Anselme & Güntürkün generate exciting new insights by integrating two disparate fields to explain why uncertain rewards produce strong motivational effects. Their conclusions are developed in a framework that assumes a random distribution of resources, uncommon in the natural environment. We argue that, by considering a realistically clumped spatiotemporal distribution of resources, their conclusions will be stronger and more complete.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2019
References
Arditi, R. & Dacorogna, B. (1988) Optimal foraging on arbitrary food distributions and the definition of habitat patches. The American Naturalist 131:837–46.Google Scholar
Fitzpatrick, C. L., Hobson, E. A., Mendelson, T. C., Rodríguez, R. L., Safran, R. J., Scordato, E. S. C., Servedio, M. R., Stern, C.A., Symes, L. B. & Kopp, M. (2018) Theory meets empiry: A citation network analysis. BioScience 68(10):805–12. https://doi.org/10.1093/biosci/biy083.Google Scholar
Harrigan, K. A., Collins, K., Dixon, M. J. & Fugelsang, J. (2010) Addictive gameplay: What casual game designers can learn from slot machine research. In: Futureplay ’10: Proceedings of the International Academic Conference on the Future of Game Design and Technology, Vancouver, BC, Canada, May 6–7, 2010, pp. 127–33. ACM. doi: 10.1145/1920778.1920796.Google Scholar
Iwasa, Y., Higashi, M. & Yamamura, N. (1981) Prey distribution as a factor determining the choice of optimal foraging strategy. The American Naturalist 117:710–23.Google Scholar
Jack, R., Crivelli, C. & Wheatley, T. (2018) Using data-driven methods to diversify knowledge of human psychology. Trends in Cognitive Sciences 22:1–5.Google Scholar
Krebs, J. R., Ryan, J. C. & Charnov, E. L. (1974) Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behaviour 22:953–964.Google Scholar
McIntyre, N. E. & Wiens, J. A. (1999) Interactions between landscape structure and animal behavior: The roles of heterogeneously distributed resources and food deprivation on movement patterns. Landscape Ecology 14:437–47.Google Scholar
Pyke, G. H. (2015) Understanding movements of organisms: It's time to abandon the Lévy foraging hypothesis. Methods in Ecology and Evolution 6:1–16.Google Scholar
Racey, P. A. & Swift, S. M. (1985) Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation: I. Foraging behaviour. Journal of Animal Ecology 54:205–15.Google Scholar
Scarf, D., Miles, K., Sloan, A., Goulter, N., Hegan, M., Seid-Fatemi, A., Harper, D. & Colombo, M. (2011) Brain cells in the avian “prefrontal cortex” code for features of slot-machine-like gambling. PLoS ONE 6:e14589.Google Scholar
Target article
How foraging works: Uncertainty magnifies food-seeking motivation
Related commentaries (22)
A neural basis for food foraging in obesity
Beyond uncertainty: A broader scope for “incentive hope” mechanisms and its implications
Beyond “incentive hope”: Information sampling and learning under reward uncertainty
Complex social ecology needs complex machineries of foraging
Considerations for the study of “incentive hope” and sign-tracking behaviors in humans
Does the “incentive hope” hypothesis explain food-wasting behavior among humans? Yes and no
Extending models of “How Foraging Works”: Uncertainty, controllability, and survivability
Food security and obesity: Can passerine foraging behavior inform explanations for human weight gain?
Food seeking and food sharing under uncertainty
Food-seeking behavior has complex evolutionary pressures in songbirds: Linking parental foraging to offspring sexual selection
Foraging extends beyond food: Hoarding of mental energy and information seeking in response to uncertainty
Hoarding all of the chips: Slot machine gambling and the foraging for coins
Hope, exploration, and equilibrated action schemes
How uncertainty begets hope: A model of adaptive and maladaptive seeking behavior
Mechanistic models must link the field and the lab
Overlapping neural systems underlying “incentive hope” and apprehension
Random isn't real: How the patchy distribution of ecological rewards may generate “incentive hope”
Simulating exploration versus exploitation in agent foraging under different environment uncertainties
The value of uncertainty: An active inference perspective
Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers
“How Foraging Works”: Let's not forget the physiological mechanisms of energy balance
“Incentive hope” and the nature of impulsivity in low-socioeconomic-status individuals
Author response
Incentive hope: A default psychological response to multiple forms of uncertainty