Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T14:57:11.640Z Has data issue: false hasContentIssue false

ON CERTAIN CLOSE-TO-CONVEX FUNCTIONS

Published online by Cambridge University Press:  17 July 2023

MD FIROZ ALI*
Affiliation:
National Institute of Technology Durgapur, Mahatma Gandhi Road, Durgapur, Durgapur-713203, West Bengal, India e-mail: [email protected]
MD NUREZZAMAN
Affiliation:
National Institute of Technology Durgapur, Mahatma Gandhi Road, Durgapur, Durgapur-713203, West Bengal, India e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Let $\mathcal {K}_u$ denote the class of all analytic functions f in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}$, normalised by $f(0)=f'(0)-1=0$ and satisfying $|zf'(z)/g(z)-1|<1$ in $\mathbb {D}$ for some starlike function g. Allu, Sokól and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc. 108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in $\mathcal {K}_u$, and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class $\mathcal {K}_u$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathcal {H}$ be the class of all analytic functions in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$ . Let $\mathcal {B}$ be the subclass of $\mathcal {H}$ consisting of all functions f in $\mathcal {H}$ with $|f(z)|<1$ for all $z\in \mathbb {D}$ , $\mathcal {B}_0$ be the subclass of $\mathcal {B}$ with $f(0)=0$ and $\mathcal {A}$ be the subclass of $\mathcal {H}$ consisting of all functions f normalised by $f(0)=f'(0)-1=0$ with the Taylor series expansion

(1.1) $$ \begin{align} f(z)= z+\sum_{n=2}^{\infty}a_n z^n. \end{align} $$

Further, let $\mathcal {S}$ be the subclass of $\mathcal {A}$ that are univalent (that is, one-to-one) in $\mathbb {D}$ . A function $f\in \mathcal {A}$ is called starlike (respectively, convex) if $f(\mathbb {D})$ is a starlike domain (respectively, a convex domain) with respect to the origin. The set of all starlike functions and convex functions in $\mathcal {S}$ are denoted by $\mathcal {S}^*$ and $\mathcal {C}$ , respectively. It is well known that a function f in $\mathcal {A}$ is starlike (respectively, convex) if and only if $\mathrm {Re\,} zf'(z)/f(z)>0$ (respectively, $\mathrm {Re\,} (1+zf"(z)/f'(z))>0$ ) for $z\in \mathbb {D}$ . For further information about these classes, we refer to [Reference Duren5, Reference Goodman7].

A function $f\in \mathcal {A}$ is said to be close-to-convex if the complement of the image-domain $f(\mathbb {D})$ in $\mathbb {C}$ is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays) and the class of all close-to-convex functions is denoted by $\mathcal {K}$ . This class was introduced by Kaplan [Reference Kaplan10]. A function $f\in \mathcal {A}$ is close-to-convex if and only if there exists a starlike function $g\in \mathcal {S}^*$ and a real number $\alpha \in (-\pi /2,\pi /2)$ such that (see [Reference Duren5, Reference Kaplan10])

$$ \begin{align*} \mathrm{Re\,} \bigg(e^{i\alpha}\frac{zf'(z)}{g(z)}\bigg)>0,\quad z\in\mathbb{D}. \end{align*} $$

In 1968, Singh [Reference Singh16] introduced and studied the class $\mathcal {S}_u^*$ consisting of functions f in $\mathcal {A}$ such that

$$ \begin{align*} \bigg|\frac{zf'(z)}{f(z)}-1\bigg|<1\quad \text{for}~z\in\mathbb{D}. \end{align*} $$

It is easy to see that every function in $\mathcal {S}_u^*$ also belongs to $\mathcal {S}^*$ . Singh [Reference Singh16] obtained the distortion theorem, coefficient estimate and radius of convexity for the class $\mathcal {S}_u^*$ . Recently, Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] introduced a close-to-convex analogue of the class $\mathcal {S}_u^*$ denoted by $\mathcal {K}_u$ . A function f in $\mathcal {A}$ belongs to $\mathcal {K}_u$ if there exists a starlike function $g\in \mathcal {S}^*$ such that

$$ \begin{align*} \bigg|\frac{zf'(z)}{g(z)}-1\bigg|<1\quad \text{for } z\in\mathbb{D}. \end{align*} $$

Clearly, every function in $\mathcal {K}_u$ is close-to-convex.

It is well known that if $f\in \mathcal {S}$ is of the form (1.1), then $|a_n|\le n$ for all $n\geq 2$ , and equality holds for the rotations of the Koebe function $k(z)=z/(1- z)^2$ . Singh [Reference Singh16] proved that if $f\in \mathcal {S}_u^*$ , then $|a_n|\le 1/(n-1)$ for all $~n\geq 2$ , and this inequality is sharp. In 2020, Allu $et~al.$ [Reference Allu, Sokól and Thomas1] studied coefficient bounds for the functions $f(z)$ of the form (1.1) in the class $\mathcal {K}_{u}$ and obtained the sharp bounds $|a_2|\le 3/2$ and $|a_3|\leq 5/3$ and proposed a conjecture that $|a_n|\le (2n-1)/n$ for $n\ge 4$ .

The Fekete–Szegö problem is to find the maximum value of the coefficient functional

$$ \begin{align*} \Phi_\mu(f)=|a_3-\mu a_2^2|, \quad \mu\in\mathbb{C}, \end{align*} $$

when f of the form (1.1) varies over a class of functions $\mathcal {F}$ . In 1933, Fekete–Szegö [Reference Fekete and Szegö6] used the Löwner differential method to prove that

$$ \begin{align*} \max\limits_{f\in\mathcal{S}} \Phi_\mu(f)= \begin{cases} 1+2e^{-{2\mu}/{(1-\mu)}} &\text{for }0\leq\mu<1, \\ 1 &\text{for } \mu=1. \end{cases} \end{align*} $$

In 1987, Koepf [Reference Koepf12] obtained the sharp bound of $\Phi _\mu (f)$ for any $\mu \in \mathbb {R}$ for the class $\mathcal {K}$ :

$$ \begin{align*} \max\limits_{f\in\mathcal{K}} \Phi_\mu(f)=\begin{cases} |3-4\mu| &\text{if } \mu\in\bigg(-\infty,\dfrac{1}{3}\bigg]\cup[1,\infty),\\[6pt] \dfrac{1}{3}+\dfrac{4}{9\mu} &\text{if } \mu\in\bigg[\dfrac{1}{3},\dfrac{2}{3}\bigg],\\[6pt] 1 &\text{if } \mu\in\bigg[\dfrac{2}{3},1\bigg]. \end{cases} \end{align*} $$

The Fekete–Szegö problem has been studied for different subclasses of $\mathcal {S}$ (see [Reference Kanas and Lecko9, Reference Koepf13Reference London15, Reference Singh and Singh17]). Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] considered the class $\mathcal {K}_{u}$ and obtained an estimate of the Fekete–Szegö functional $|a_3-\mu a_2^2|$ with $\mu \in \mathbb {R}$ . However, they were only able to show sharpness when $\mu \leq 0,~2/3\leq \mu \leq 1~\text {and}~\mu \geq 10/9$ .

Let $\mathcal {LU}$ denote the subclass of $\mathcal {H}$ consisting of all locally univalent functions in $\mathbb {D}$ , that is, $\mathcal {LU}:=\{f\in \mathcal {H}:f'(z)\ne 0\text { for all }z\in \mathbb {D}\}$ . For a locally univalent function $f\in \mathcal {LU}$ , the pre-Schwarzian derivative is defined by

$$ \begin{align*}P_f(z)=\frac{f"(z)}{f'(z)},\end{align*} $$

and the pre-Schwarzian norm (the hyperbolic sup-norm) is defined by

$$ \begin{align*} \|P_f\|=\sup\limits_{z\in\mathbb{D}}(1-|z|^2)|P_f(z)|. \end{align*} $$

This norm has significant meaning in the theory of Teichmüller spaces. For a univalent function f, it is well known that $\|P_f\|\leq 6$ and the estimate is sharp. However, if $\|P_f\|\leq 1$ , then f is univalent in $\mathbb {D}$ (see [Reference Becker2, Reference Becker and Pommerenke3]). In 1976, Yamashita [Reference Yamashita18] proved that $\|P_f \|$ is finite if and only if f is uniformly locally univalent in $\mathbb {D}$ . Moreover, if $\|P_f\|<2$ , then f is bounded in $\mathbb {D}$ (see [Reference Kim and Sugawa11]). We will obtain results related to the pre-Schwarzian norm for functions $f\in \mathcal {K}_u$ .

We first prove the conjecture $|a_n|\le (2n-1)/n$ for $n\ge 2$ for functions in $\mathcal {K}_u$ as proposed by Allu $et~ al.$ [Reference Allu, Sokól and Thomas1]. We next obtain the sharp estimate of the Fekete–Szegö functional $\Phi _\mu (f)$ for the class $\mathcal {K}_u$ for any $\mu \in \mathbb {R}$ . Finally, we obtain estimates of the pre-Schwarzian norm for functions in $\mathcal {K}_u$ .

2 Main results

Before stating our main results, we will discuss some preliminaries which will help us to prove our results. The first lemma is part of a result proved by Choi $et~al.$ [Reference Choi, Kim and Sugawa4].

Lemma 2.1. For $A, B\in \mathbb {C}$ and $K, L, M\in \mathbb {R}$ , let

$$ \begin{align*} \Omega_(A, B, K, L, M)=\max_{\substack{|u_1\leq 1\\ |v_1|\leq 1}}(|A|(1-|u_1|^2)+|B|(1-|v_1|^2)+|Ku_1^2+Lv_1^2+2Mu_1v_1|). \end{align*} $$

Further consider the following four conditions involving $A, B, K, L, M$ :

  1. (A1) $|A|\geq \max \bigg \{|K|\sqrt {1-\dfrac {M^2}{KL}},|M|-|K|\bigg \}$ ;

  2. (A2) $|K|+|M|\leq |A| <|K|\sqrt {1-\dfrac {M^2}{KL}}$ ;

  3. (B1) $|B|\geq \max \bigg \{|L|\sqrt {1-\dfrac {M^2}{KL}},|M|-|L|\bigg \}$ ;

  4. (B2) $|L|+|M|\leq |B| <|L|\sqrt {1-\dfrac {M^2}{KL}}$ .

If $KL\geq 0$ and $D=(|K|-|A|)(|L|-|B|)-M^2$ , then

$$ \begin{align*} \Omega(A, B, K, L, M)= \begin{cases} |A|+|L|-\dfrac{M^2}{|K|-|L|} &\text{if } |A|> |M|+|K|~\text{and}~D<0,\\ |B|+|K|-\dfrac{M^2}{|L|-|B|} &\text{if } |B|> |M|+|L|~\text{and}~D<0,\\ |K|+2|M|+|L| &\text{otherwise}. \end{cases} \end{align*} $$

If $KL<0$ , then $\Omega (A, B, K, L, M)=|A|+|B|+\max \{0,R\},$ where

$$ \begin{align*} R=\begin{cases} |K|-|A|+\dfrac{M^2}{|B|+|L|}, &\text{when (B1) holds but (A1) and (A2) do not hold}, \\ |L|-|B|+\dfrac{M^2}{|A|+|K|} , &\text{when (A1) holds but (B1) and (B2) do not hold}. \end{cases} \end{align*} $$

For two functions f and g in $\mathcal {H}$ , we say that $f(z)$ is majorised by $g(z)$ if $|f(z)|\leq |g(z)|$ for all $z\in \mathbb {D}$ or equivalently, if there exists $\omega \in \mathcal {B}$ such that ${f(z)=\omega (z)g(z)}$ . Let $f(z)=\sum _{n=0}^\infty a_nz^n$ and $F(z)=\sum _{n=0}^\infty A_nz^n$ be two power series convergent in some disk $E_R=\{z:|z|<R,~R>0\}$ . We say that $f(z)$ is dominated by $F(z)$ and we write $f(z)\ll F(z)$ if for any integer $n\geq 0$ , $|a_n|\leq |A_n|.$

Lemma 2.2 [Reference Hallenbeck and Macgregor8, Theorem 6.7].

If $f(z)=\sum _{n=1}^\infty a_nz^n$ , $z\in \mathbb {D}$ , is majorised by g and $g\in \mathcal {S}^*$ , then $|a_n|\le n$ for all $n\ge 1$ , that is, $f(z)\ll k(z)$ , where $k(z)=z/(1-z)^2$ is the Koebe function.

Our first result confirms the conjecture of Allu $et~al.$ in [Reference Allu, Sokól and Thomas1].

Theorem 2.3. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then,

$$ \begin{align*}|a_n|\leq {\frac{2n-1}{n}}\quad\text{for all } n\geq 2.\end{align*} $$

Moreover, the estimate is sharp.

Proof. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then there exists a starlike function $g\in \mathcal {S}^*$ such that

$$ \begin{align*}\bigg|\frac{zf'(z)}{g(z)}-1\bigg|<1.\end{align*} $$

Further, there exists a function $\omega (z)\in \mathcal {B}_{0}$ such that

$$ \begin{align*}zf'(z)=g(z)(1+\omega(z)),\end{align*} $$

that is,

(2.1) $$ \begin{align} zf'(z)=g(z)+zg(z)\omega_1(z) \end{align} $$

for some $\omega _1(z)\in \mathcal {B}$ . Since, $g(z)\omega _1(z)$ is majorised by $g(z)$ and $g\in \mathcal {S}^*$ , by Lemma 2.2, the function $g(z)\omega _1(z)$ is dominated by $k(z)$ , that is, $g(z)\omega _1(z)\ll k(z)$ . Thus, from (2.1),

$$ \begin{align*}zf'(z)\ll k(z)+zk(z),\end{align*} $$

and consequently,

$$ \begin{align*}|a_n|\leq \frac{2n-1}{n}.\end{align*} $$

The estimate is sharp for the function $f_1\in \mathcal {K}_{u}$ given by

$$ \begin{align*} f_1(z)=\frac{2z}{1-z}+\log(1-z).\\[-39pt] \end{align*} $$

For functions in $\mathcal {K}_{u}$ , Allu $et~ al.$ [Reference Allu, Sokól and Thomas1] obtained an estimate of the Fekete–Szegö functional $|a_3-\mu a_2^2|$ with $\mu \in \mathbb {R}$ . The result is sharp only when $\mu \leq 0,~2/3\leq \mu \leq ~1~\text {and}~\mu \geq 10/9$ . In the next theorem, we will give the sharp bounds of $|a_3-\mu a_2^2|$ for all values of $\mu \in \mathbb {R}$ . Our proof is completely different from that in [Reference Allu, Sokól and Thomas1]. Our main tool to get the sharp bound is Lemma 2.1.

Theorem 2.4. Let $f\in \mathcal {K}_{u}$ be given by (1.1). Then for every $\mu \in \mathbb {R}$ ,

$$ \begin{align*} |a_3-\mu a_2^2|\leq \begin{cases} \dfrac{5}{3}-\dfrac{9}{4}\mu &\text{if}\ \mu\leq0,\\[2mm] \dfrac{4(5-3\mu)}{3(4+3\mu)} &\text{if}\ 0\leq \mu \leq \dfrac{2}{3},\\[3mm] \dfrac{2}{3} &\text{if}\ \dfrac{2}{3}\leq \mu \leq 1,\\[1.5mm] \dfrac{3\mu-5}{3(3\mu-4)} &\text{if}\ 1\leq \mu \leq \dfrac{10}{9},\\[3mm] \dfrac{9}{4}\mu-\dfrac{5}{3} &\text{if}\ \mu\geq \dfrac{10}{9}. \end{cases} \end{align*} $$

Moreover, all the inequalities are sharp.

Proof. Let $f\in \mathcal {K}_{u}$ be of the form (1.1). Then there exists a starlike function $g(z)=z+\sum _{n=2}^{\infty }b_nz^n$ in $\mathcal {S}^* $ such that

$$ \begin{align*} \bigg|\frac{zf'(z)}{g(z)}-1\bigg|<1. \end{align*} $$

Thus, there exists $\omega (z)=\sum _{n=1}^{\infty }c_nz^n$ in $\mathcal {B}_0$ such that

(2.2) $$ \begin{align} f'(z)=\frac{g(z)}{z}(1+\omega(z)). \end{align} $$

From (2.2), comparing the coefficients of $z^2$ and $z^3$ on both sides,

(2.3) $$ \begin{align} a_2=\frac{b_2}{2}+\frac{c_1}{2}\quad\text{and}\quad a_3=\frac{c_2}{3}+\frac{b_3}{3}+\frac{1}{3}b_2c_1. \end{align} $$

Since $g\in \mathcal {S}^*$ , it follows that there exists another $\rho \in \mathcal {B}_0$ of the form $\rho (z)=\sum _{n=1}^{\infty }d_nz^n$ such that

(2.4) $$ \begin{align} \frac{zg'(z)}{g(z)}= \frac{1+ \rho(z)}{1- \rho(z)}. \end{align} $$

On comparing the coefficients of $z^2$ and $z^3$ on both sides,

(2.5) $$ \begin{align} b_2=2d_1\quad\text{and}\quad b_3=d_2+3d_1^2. \end{align} $$

From (2.3) and (2.5),

$$ \begin{align*} a_2=d_1+\frac{c_1}{2}\quad\text{and}\quad a_3=\frac{c_2}{3}+\frac{d_2}{3}+d_1^2+\frac{2}{3}d_1c_1. \end{align*} $$

Therefore, for any $\mu \in \mathbb {R}$ ,

$$ \begin{align*} a_3-\mu a_2^2=Ac_2+Bd_2+Kc_1^2+Ld_1^2+2Mc_1d_1, \end{align*} $$

where

$$ \begin{align*}A=\frac{1}{3}, \quad B=\frac{1}{3}, \quad K=-\frac{\mu}{4}, \quad M=\frac{2-3\mu}{6}, \quad L=1-\mu.\end{align*} $$

Thus,

$$ \begin{align*} |a_3-\mu a_2^2|&\leq |A\|c_2|+|B\|d_2|+|Kc_1^2+Ld_1^2+2Mc_1d_1|\\ &\leq |A|(1-|c_1|^2)+|B|(1-|d_1|^2)+|Kc_1^2+Ld_1^2+2Mc_1d_1|.\nonumber \end{align*} $$

Now, we have to find the maximum value of $|a_3-\mu a_2^2|$ when $|c_1|\leq 1,~ |d_1|\leq 1$ . To do this, we will use Lemma 2.1 and consider the following five cases.

Case 1: Let $\mu \leq 0$ . A simple calculation shows that

$$ \begin{align*}KL=-\frac{\mu(1-\mu)}{4}\geq0, \quad D=-\frac{2-3\mu}{6}<0, \quad |A|\le |M|+|K|, \quad |B|\le |M|+|L|.\end{align*} $$

Therefore, from Lemma 2.1,

$$ \begin{align*}|a_3-\mu a_2^2|\leq|K|+2|M|+|L|=\tfrac{5}{3}-\tfrac{9}{4}\mu.\end{align*} $$

The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z$ and $\rho (z)=z$ , that is,

$$ \begin{align*}f(z)=\frac{2z}{1-z}+\log(1-z)=z+\frac{3}{2}z^2+\frac{5}{3}z^3+\cdots.\end{align*} $$

Case 2: Let $0\leq \mu \leq 2/3$ . A simple calculation shows that

$$ \begin{align*}KL=-\frac{\mu(1-\mu)}{4}<0.\end{align*} $$

Thus, from Lemma 2.1,

(2.6) $$ \begin{align} |a_3-\mu a_2^2|\leq|A|+|B|+\max\{0,R\}, \end{align} $$

where R can be obtained from Lemma 2.1. For $0\leq \mu \leq \tfrac 23$ ,

$$ \begin{align*} |M|-|K|=\frac{4-9\mu}{12}\le \frac{1}{3}=|A| \end{align*} $$

and

$$ \begin{align*} |K|\sqrt{1-\dfrac{M^2}{KL}}\leq|A|&\iff\dfrac{\mu}{4}\sqrt{1+\dfrac{(2-3\mu)^2}{9\mu(1-\mu)}} \le\frac{1}{3}\\ &\iff 3\mu^2-20\mu+16\geq0, \end{align*} $$

which is true for all $\mu \in [0,~2/3]$ . Thus, the condition (A1) of Lemma 2.1 is satisfied.

Again, for $0\leq \mu \leq 2/3$ ,

$$ \begin{align*} |M|-|L|=\frac{3\mu-4}{6}\leq -\frac{1}{3}\le |B| \end{align*} $$

and

$$ \begin{align*} |L|\sqrt{1-\dfrac{M^2}{KL}}\leq|B|&\iff(1-\mu)\sqrt{1+\dfrac{(2-3\mu)^2}{9\mu(1-\mu)}}\leq\frac{1}{3}\\ &\iff 3\mu^2-8\mu+4\leq 0, \end{align*} $$

which is not true for any $\mu \in [0,~2/3]$ . Thus, the condition (B1) of Lemma 2.1 is not satisfied. Further, for $0\leq \mu \leq 2/3$ ,

$$ \begin{align*}|L|+|M|=\frac{4-3\mu}{4}\ge \frac{1}{2}\ge |B|\end{align*} $$

and so, the condition (B2) of Lemma 2.1 is not satisfied.

Therefore, by Lemma 2.1,

$$ \begin{align*}R=|L|-|B|+\dfrac{M^2}{|A|+|K|}=\dfrac{2}{3}-\mu+\dfrac{(2-3\mu)^2}{4(4+3\mu)}\end{align*} $$

and consequently, from (2.6),

$$ \begin{align*} |a_3-\mu a_2^2|\leq\frac{4(5-3\mu)}{3(4+3\mu)}. \end{align*} $$

The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with

$$ \begin{align*} \omega(z)=\frac{az(z+\bar{a}v_1)}{1+a\bar{v_1}z}\quad \text{and}\quad \rho(z)=z, \end{align*} $$

where

$$ \begin{align*} v_1=\frac{2(2-3\mu)}{4+3\mu}\quad\text{and}\quad a=\frac{v_2}{1-v_1^2}\quad\text{with}\quad v_1^2+v_2=1,\end{align*} $$

that is,

$$ \begin{align*}f(z)=\int_0^z\frac{1+(a\bar{v_1}+v_1)t+at^2}{(1-t)^2(1+a\bar{v_1}t)}\,dt=z+\frac{6}{4+3\mu}z^2+\frac{80+120\mu-36\mu^2}{3(4+3\mu)^2}z^3+\cdots.\end{align*} $$

Case 3: Let $2/3\leq \mu \leq 1$ . It is easy to show that $KL= -\tfrac 14\mu (1-\mu )<0$ . So, from Lemma 2.1,

(2.7) $$ \begin{align} |a_3-\mu a_2^2|\leq|A|+|B|+\max\{0,R\}, \end{align} $$

where R can be obtained from Lemma 2.1. Proceeding as in Case 2, we can verify that the condition (A1) holds but (B1) and (B2) of Lemma 2.1 do not hold. Therefore,

$$ \begin{align*}R=|K|-|A|+\dfrac{M^2}{|B|+|L|}=\frac{\mu-1}{4-3\mu}\leq0\quad\text{for}~ \frac{2}{3}\leq\mu\leq 1\end{align*} $$

and consequently, from (2.7),

$$ \begin{align*}|a_3-\mu a_2^2|\leq \tfrac{1}{3}+\tfrac{1}{3}=\tfrac{2}{3}.\end{align*} $$

The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z^2$ and $\rho (z)=z^2,$ that is,

$$ \begin{align*}f(z)=\log\frac{1+z}{1-z}-z=z+\frac{2}{3}z^3+\cdots.\end{align*} $$

Case 4: Let $1\leq \mu \leq 10/9$ . A simple calculation shows that

$$ \begin{align*}KL=-\frac{\mu(1-\mu)}{4}\geq0, \quad D=-\frac{1-\mu}{3}<0 \quad \text{and}\quad |B|>|M|+|L|.\end{align*} $$

Thus, from Lemma 2.1,

$$ \begin{align*}|a_3-\mu a_2^2|\leq|B|+|K|-\frac{M^2}{|L|-|B|}=\frac{5-3\mu}{3(4-3\mu)}.\end{align*} $$

The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with

$$ \begin{align*}\omega(z)=z \quad \text{and}\quad \rho(z)=\frac{az(z+\bar{a}v_1)}{1+a\bar{v_1}z},\end{align*} $$

where

$$ \begin{align*} v_1=\frac{3\mu-2}{8-6\mu}\quad \text{and} \quad a=-\frac{v_2}{1-v_1^2}\quad\text{with}\quad v_1^2+v_2=1,\end{align*} $$

that is,

$$ \begin{align*} \frac{g(z)}{z}=\exp\bigg( \int_0^z\frac{2(v_1+at)}{1+a\bar{v_1}t-v_1t-at^2}\,dt\bigg)=1+2v_1z+(4v_1^2-1)z^2+\cdots\end{align*} $$

and

$$ \begin{align*}f(z)=\int_0^z\frac{g(t)}{t}(1+t)\,dt=z+\frac{1}{4-3\mu}z^2+\frac{30\mu-20-9\mu^2}{3(4-3\mu)^2}z^3+\cdots.\end{align*} $$

Case 5: Let $\mu \geq 10/9$ . A simple calculation shows that

$$ \begin{align*}KL=-\frac{\mu(1-\mu)}{4}\geq0, \quad D=-\frac{1-\mu}{3}<0, \quad |A|\le |M|+|K|, \quad |B|\le |M|+|L|.\end{align*} $$

Thus, from Lemma 2.1,

$$ \begin{align*}|a_3-\mu a_2^2|\leq|K|+2|M|+|L|=\frac{9\mu}{4}-\frac{5}{3}.\end{align*} $$

The inequality is sharp and the equality holds for the function $f\in \mathcal {K}_{u}$ given by (2.2) and (2.4) with $\omega (z)=z$ and $\rho (z)=z$ , that is,

$$ \begin{align*} f(z)=\frac{2z}{1-z}+\log(1-z)=z+\frac{3}{2}z^2+\frac{5}{3}z^3+\cdots.\\[-43pt] \end{align*} $$

Finally, we establish a result related to the pre-Schwarzian norm for functions in $\mathcal {K}_{u}$ . We first note that a function f in $\mathcal {A}$ belongs to $\mathcal {K}_{u}$ if there exists a function $g\in \mathcal {S}^*$ such that $|zf'(z)/g(z)-1|<1.$ In other words, if there exists a convex function $h\in \mathcal {C}$ with $g(z)=zh'(z)$ such that

$$ \begin{align*}\bigg|\frac{f'(z)}{h'(z)}-1\bigg|<1.\end{align*} $$

Theorem 2.5. Let $f\in \mathcal {K}_{u}$ and $h\in \mathcal {C}$ be the associated convex function. Then,

$$ \begin{align*} |\, \|P_f\|-\|P_h\|\, |\le 2, \end{align*} $$

and the estimate is sharp. Further, $\|P_f\|\le 6$ .

Proof. Let $f\in \mathcal {K}_{u}$ and $h\in \mathcal {C}$ be the associated convex function such that

$$ \begin{align*}\bigg|\frac{f'(z)}{h'(z)}-1\bigg|<1.\end{align*} $$

Then there exists a function $\omega (z)\in \mathcal {B}_{0}$ such that

$$ \begin{align*}\frac{f'(z)}{h'(z)}=1+\omega(z).\end{align*} $$

Taking the logarithmic derivative on both sides,

$$ \begin{align*} \frac{f"(z)}{f'(z)}-\frac{h"(z)}{h'(z)}=\frac{\omega'(z)}{1+\omega(z)} \end{align*} $$

and so,

$$ \begin{align*} \left|\frac{f"(z)}{f'(z)}\right|-\left|\frac{h"(z)}{h'(z)}\right| \leq\left|\frac{f"(z)}{f'(z)}-\frac{h"(z)}{h'(z)}\right| =\left|\frac{\omega'(z)}{1+\omega(z)}\right|. \end{align*} $$

Thus,

$$ \begin{align*} |\, \|P_f\|-\|P_h\| \,|&=\bigg|\sup\limits_{z\in\mathbb{D}}(1-|z|^2)\bigg|\frac{f"(z)}{f'(z)}\bigg| -\sup\limits_{z\in\mathbb{D}}(1-|z|^2)\bigg|\frac{h"(z)}{h'(z)}\bigg|\,\bigg|\\&\le\sup\limits_{z\in\mathbb{D}}(1-|z|^2)\bigg|\bigg(\bigg|\frac{f"(z)}{f'(z)}\bigg|-\bigg|\frac{h"(z)}{h'(z)}\bigg|\bigg)\bigg| \\&\leq\sup\limits_{z\in\mathbb{D}}(1-|z|^2)\bigg|\frac{f"(z)}{f'(z)}-\frac{h"(z)}{h'(z)}\bigg| \\&= \sup\limits_{z\in\mathbb{D}}(1-|z|^2)\frac{|\omega'(z)|}{|1+\omega(z)|}. \end{align*} $$

Since $\omega (z)\in \mathcal {B}_0$ , by the Schwarz–Pick lemma,

$$ \begin{align*} |\omega'(z)|\le\frac{1-|\omega(z)|^2}{1-|z|^2}. \end{align*} $$

Therefore,

$$ \begin{align*} |\, \|P_f\|-\|P_h\| \,|\le \sup\limits_{z\in\mathbb{D}}\frac{1-|\omega(z)|^2}{|1+\omega(z)|}\le 2. \end{align*} $$

The above inequality is sharp for the functions

$$ \begin{align*}f(z)=-\log(1-z)\quad \text{and}\quad h(z)=\frac{z}{1-z}.\end{align*} $$

It is well known that $\|P_h\|\le 4$ for $f\in \mathcal {C}$ (see [Reference Yamashita19]), and so $\|P_f\|\le 6$ .

References

Allu, V., Sokól, J. and Thomas, D. K., ‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc. 108 (2020), 268281.CrossRefGoogle Scholar
Becker, J., ‘Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen’, J. reine angew. Math 255 (1972), 2343.Google Scholar
Becker, J. and Pommerenke, C., ‘Schlichtheitskriterien und Jordangebiete’, J. reine angew. Math. 354 (1984), 7494.Google Scholar
Choi, N. E., Kim, Y. C. and Sugawa, T., ‘A general approach to the Fekete–Szegö problem’, J. Math. Soc. Japan 59 (2007), 707727.CrossRefGoogle Scholar
Duren, P. L., Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259 (Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1983).Google Scholar
Fekete, M. and Szegö, G., ‘Eine Bemerkung über ungerade schlichte Funktionen’, J. Lond. Math. Soc. 8 (1933), 8589.CrossRefGoogle Scholar
Goodman, A. W., Univalent Functions, Vol. I and II (Mariner Publishing Co., Tampa, FL, 1983).Google Scholar
Hallenbeck, D. J. and Macgregor, T. H., Linear Problems and Convexity Techniques in Geometric Function Theory, Monographs and Studies in Mathematics, 22 (Pitman, Boston, MA, 1984).Google Scholar
Kanas, S. and Lecko, A., ‘On the Fekete–Szegö problem and the domain of convexity for a certain class of univalent functions’, Folia Sci. Univ. Tech. Resoviensis 73 (1990), 4957.Google Scholar
Kaplan, W., ‘Close-to-convex schlicht functions’, Michigan Math. J. 1 (1952), 169185.CrossRefGoogle Scholar
Kim, Y. C. and Sugawa, T., ‘Growth and coefficient estimates for uniformly locally univalent functions on the unit disk’, Rocky Mountain J. Math. 32 (2002), 179200.CrossRefGoogle Scholar
Koepf, W., ‘On the Fekete–Szegö problem for close-to-convex functions’, Proc. Amer. Math. Soc. 101 (1987), 8995.Google Scholar
Koepf, W., ‘On the Fekete–Szegö problem for close-to-convex functions II’, Arch. Math. 49 (1987), 420433.CrossRefGoogle Scholar
Kowalczyk, B. and Lecko, A., ‘Fekete–Szegö problem for a certain subclass of close-to-convex functions’, Bull. Malays. Math. Sci. Soc. 38(2) (2015), 13931410.CrossRefGoogle Scholar
London, R. R., ‘Fekete–Szegö inequalities for close-to-convex functions’, Proc. Amer. Math. Soc. 117 (1993), 947950.Google Scholar
Singh, R., ‘On a class of starlike functions’, Compos. Math. 19 (1968), 7882.Google Scholar
Singh, R. and Singh, V., ‘On a class of bounded starlike functions’, Indian J. Pure Appl. Math. 5(8) (1974), 733754.Google Scholar
Yamashita, S., ‘Almost locally univalent functions’, Monatsh. Math. 81 (1976), 235240.CrossRefGoogle Scholar
Yamashita, S., ‘Norm estimates for function starlike or convex of order alpha’, Hokkaido Math. J. 28(1) (1999), 217230 (summary in English).CrossRefGoogle Scholar