Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T09:24:23.490Z Has data issue: false hasContentIssue false

Toward a productive evolutionary understanding of music

Published online by Cambridge University Press:  30 September 2021

Samuel A. Mehr
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, [email protected], https://[email protected], https://projects.iq.harvard.edu/epl Data Science Initiative, Harvard University, Cambridge, MA02138 School of Psychology, Victoria University of Wellington, Wellington6012, New Zealand
Max M. Krasnow
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, [email protected], https://[email protected], https://projects.iq.harvard.edu/epl
Gregory A. Bryant
Affiliation:
Department of Communication, University of California Los Angeles, Los Angeles, CA90095, [email protected], http://gabryant.bol.ucla.edu Center for Behavior, Evolution, and Culture, University of California Los Angeles, Los Angeles, CA90095, USA
Edward H. Hagen
Affiliation:
Department of Anthropology, Washington State University, Vancouver, WA98686, USA. [email protected], https://anthro.vancouver.wsu.edu/people/hagen

Abstract

We discuss approaches to the study of the evolution of music (sect. R1); challenges to each of the two theories of the origins of music presented in the companion target articles (sect. R2); future directions for testing them (sect. R3); and priorities for better understanding the nature of music (sect. R4).

Type
Authors’ Response
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

All authors contributed to this response and are listed in reverse order of seniority.

References

Ackermann, R. R., Arnold, M. L., Baiz, M. D., Cahill, J. A., Cortés‐Ortiz, L., Evans, B. J., … Zinner, D. (2019). Hybridization in human evolution: Insights from other organisms. Evolutionary Anthropology: Issues, News, and Reviews, 28(4), 189209.CrossRefGoogle ScholarPubMed
Atwood, S., Mehr, S., & Schachner, A. (2020). Expectancy effects threaten the inferential validity of synchrony-prosociality research, PsyArXiv. https://doi.org/10.31234/osf.io/zjy8u.CrossRefGoogle Scholar
Bainbridge, C. M., Bertolo, M., Youngers, J., Atwood, S., Yurdum, L., Simson, J., … Mehr, S. A. (2021). Infants relax in response to unfamiliar foreign lullabies. Nature Human Behaviour, 5(2), 256–64. doi: 10.1038/s41562-020-00963-z.CrossRefGoogle ScholarPubMed
Bertolo, M., Singh, M., & Mehr, S. A. (2021). Sound-induced motion in chimpanzees does not imply shared ancestry for music or dance. Proceedings of the National Academy of Sciences, 118(2), e2015664118. doi: 10.1073/pnas.2015664118.CrossRefGoogle ScholarPubMed
Birch, J. (2019). Are kin and group selection rivals or friends? Current Biology: CB, 29(11), R433R438.CrossRefGoogle ScholarPubMed
Blackwell, A. D., Urlacher, S. S., Beheim, B., von Rueden, C., Jaeggi, A., Stieglitz, J., … Kaplan, H. (2017). Growth references for Tsimane forager-horticulturalists of the Bolivian Amazon. American Journal of Physical Anthropology, 162(3), 441461.CrossRefGoogle ScholarPubMed
Bowling, D. L., Hoeschele, M., Gill, K. Z., & Fitch, W. T. (2017). The nature and nurture of musical consonance. Music Perception: An Interdisciplinary Journal, 35(1), 118121.CrossRefGoogle Scholar
Bryant, G. A. (2013). Animal signals and emotion in music: Coordinating affect across groups. Frontiers in Psychology, 4, 990.CrossRefGoogle ScholarPubMed
Bryant, G. A. (2020). Evolution, structure, and functions of human laughter. In Floyd, K. & Weber, R., eds., The handbook of communication science and biology, Routledge, pp. 6377.CrossRefGoogle Scholar
Buss, D. M., Haselton, M. G., Shackelford, T. K., Bleske, A. L., & Wakefield, J. C. (1998). Adaptations, exaptations, and spandrels. American Psychologist, 53(5), 533548.CrossRefGoogle ScholarPubMed
Corbeil, M., Trehub, S. E., & Peretz, I. (2016). Singing delays the onset of infant distress. Infancy, 21(3), 373391.CrossRefGoogle Scholar
Custodero, L. A., Rebello Britto, P., & Brooks-Gunn, J. (2003). Musical lives: A collective portrait of American parents and their young children. Journal of Applied Developmental Psychology, 24(5), 553572.CrossRefGoogle Scholar
Darwin, C. (1859). On the origin of species by means of natural selection, J. Murray.Google Scholar
Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences, 112(45), E6233E6242.CrossRefGoogle ScholarPubMed
Fouts, H. N., Hewlett, B. S., & Lamb, M. E. (2001). Weaning and the nature of early childhood interactions among Bofi foragers in Central Africa. Human Nature, 12(1), 2746.CrossRefGoogle ScholarPubMed
Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14(1), 2151.CrossRefGoogle ScholarPubMed
Hagen, E. H., & Hammerstein, P. (2009). Did Neanderthals and other early humans sing? Seeking the biological roots of music in the territorial advertisements of primates, lions, hyenas, and wolves. Musicae Scientiae, 13(2 Suppl.), 291320.CrossRefGoogle Scholar
Haig, D. (2000). The Kinship theory of genomic imprinting. Annual Review of Ecology and Systematics, 31(1), 932.CrossRefGoogle Scholar
Hayden, B. (2014). The power of feasts. Cambridge University Press.CrossRefGoogle Scholar
Hayden, B., & Villeneuve, S. (2011). A century of feasting studies. Annual Review of Anthropology, 40(1), 433449.CrossRefGoogle Scholar
Hilton, C. B.,, Crowley, L., Yan, R., Martin, A., & Mehr, S. A. (2021). Children infer the behavioral contexts of unfamiliar foreign songs. PsyArXiv. https://doi.org/10.31234/osf.io/rz6qn.Google Scholar
Hintze, A., Olson, R. S., Adami, C., & Hertwig, R. (2015). Risk sensitivity as an evolutionary adaptation. Scientific Reports, 5(1), 8242.CrossRefGoogle ScholarPubMed
Honing, H., ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140088.CrossRefGoogle ScholarPubMed
Jacobson, K., Murali, V., Newett, E., Whitman, B., & Yon, R. (2016). Music Personalization at Spotify. Proceedings of the 10th ACM Conference on Recommender Systems, Boston Massachusetts USA: ACM, pp. 373373.CrossRefGoogle Scholar
Jacoby, N., Margulis, E. H., Clayton, M., … Wald-Fuhrmann, M. (2020). Cross-cultural work in music cognition: Challenges, insights, and recommendations. Music Perception: An Interdisciplinary Journal, 37(3), 185195.CrossRefGoogle Scholar
Jacoby, N., Undurraga, E. A., McPherson, M. J., Valdés, J., Ossandón, T., & McDermott, J. H. (2019). Universal and non-universal features of musical pitch perception revealed by singing. Current Biology, 29(19), 32293243.CrossRefGoogle ScholarPubMed
Kokko, H., Jennions, M. D., & Brooks, R. (2006). Unifying and testing models of sexual selection. Annual Review of Ecology, Evolution, and Systematics, 37, 4366.CrossRefGoogle Scholar
Kotler, J., Mehr, S. A., Egner, A., Haig, D., & Krasnow, M. M. (2019). Response to vocal music in Angelman syndrome contrasts with Prader-Willi syndrome. Evolution and Human Behavior, 40(5), 420426.CrossRefGoogle ScholarPubMed
Kramer, K. L., & Greaves, R. D. (2007). Changing patterns of infant mortality and maternal fertility among Pumé foragers and horticulturalists. American Anthropologist, 109(4), 713726.CrossRefGoogle Scholar
Levitin, D. J., Chordia, P., & Menon, V. (2012). Musical rhythm spectra from Bach to Joplin obey a 1/f power law. Proceedings of the National Academy of Sciences, 109(10), 37163720.CrossRefGoogle Scholar
Lozoff, B., & Brittenham, G. (1979). Infant care: Cache or carry. The Journal of Pediatrics, 95(3), 478483.CrossRefGoogle ScholarPubMed
Manaris, B., Roos, P., Krehbiel, D., Zalonis, T., & Armstrong, J. R. (2012). Zipf's law, power laws, and music aesthetics. In Li, T., Ogihara, M., & Tzanetakis, G. (Eds.), Music data mining (pp. 169216). CRC Press.Google Scholar
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547550.CrossRefGoogle ScholarPubMed
Mehr, S. A. (2014). Music in the home: New evidence for an intergenerational link. Journal of Research in Music Education, 62(1), 7888.CrossRefGoogle Scholar
Mehr, S. A., Kotler, J., Howard, R. M., Haig, D., & Krasnow, M. M. (2017). Genomic imprinting is implicated in the psychology of music. Psychological Science, 28(10), 14551467.CrossRefGoogle ScholarPubMed
Mehr, S. A., & Krasnow, M. M. (2017). Parent-offspring conflict and the evolution of infant-directed song. Evolution and Human Behavior, 38(5), 674684.CrossRefGoogle Scholar
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), 957970.CrossRefGoogle ScholarPubMed
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486501.CrossRefGoogle ScholarPubMed
Mehr, S. A., & Spelke, E. S. (2017). Shared musical knowledge in 11-month-old infants. Developmental Science, 21(2), e12542.CrossRefGoogle ScholarPubMed
Mendoza, J. K., & Fausey, C. M. (2019). Everyday music in infancy. PsyArXiv. doi: 10.31234/osf.io/sqatb.CrossRefGoogle Scholar
Patel, A. D. (2008). Music, language, and the brain, Oxford University Press.Google Scholar
Pinker, S., Nowak, M. A., & Lee, J. J. (2008). The logic of indirect speech.. Proceedings of the National Academy of Sciences,, 105(3), 833838.CrossRefGoogle Scholar
Queller, D. C. (2020). The gene's eye view, the Gouldian knot, Fisherian swords and the causes of selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1797), 20190354.CrossRefGoogle ScholarPubMed
Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental study of inequality and unpredictability in an artificial cultural market. Science (New York, N.Y.), 311(5762), 854856.CrossRefGoogle Scholar
Sankararaman, S., Mallick, S., Patterson, N., & Reich, D. (2016). The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Current Biology: CB, 26(9), 12411247.CrossRefGoogle ScholarPubMed
Schedl, M., Bauer, C., Reisinger, W., Kowald, D., & Lex, E. (2021). Listener modeling and context-aware music recommendation based on country archetypes. Frontiers in Artificial Intelligence, 3, 508725. doi: 10.3389/frai.2020.508725.CrossRefGoogle ScholarPubMed
Sperber, D. (1994). The modularity of thought and the epidemiology of representations. In Mapping the mind: Domain specificity in cognition and culture, Cambridge University Press, pp. 3967.CrossRefGoogle Scholar
Swope, K. M. (2009). The beating of drums and clashing of symbols: Music in Ming dynasty military operations. The Chinese Historical Review, 16(2), 147177.CrossRefGoogle Scholar
Trehub, S. E., Hill, D. S., & Kamenetsky, S. B. (1997). Parents’ sung performances for infants. Canadian Journal of Experimental Psychology, 51(4), 385396.CrossRefGoogle ScholarPubMed
Way, S. F., Garcia-Gathright, J., & Cramer, H. (2020). Local trends in global music streaming. Proceedings of the International AAAI Conference on Web and Social Media, 14, 705714.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought, Princeton University Press.Google Scholar
Xiao, N. G., Quinn, P. C., Liu, S., Ge, L., Pascalis, O., & Lee, K. (2017). Older but not younger infants associate own-race faces with happy music and other-race faces with sad music. Developmental Science, 2018; 21:e12537. doi:10.1111/desc.12537.Google ScholarPubMed
Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology, Addison-Wesley Press.Google Scholar