Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T01:26:13.080Z Has data issue: false hasContentIssue false

Isochrony, vocal learning, and the acquisition of rhythm and melody

Published online by Cambridge University Press:  30 September 2021

Andrea Ravignani*
Affiliation:
Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands. [email protected]; https://www.mpi.nl/people/ravignani-andrea

Abstract

A cross-species perspective can extend and provide testable predictions for Savage et al.'s framework. Rhythm and melody, I argue, could bootstrap each other in the evolution of musicality. Isochrony may function as a temporal grid to support rehearsing and learning modulated, pitched vocalizations. Once this melodic plasticity is acquired, focus can shift back to refining rhythm processing and beat induction.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengtsson, S. L., & Ullén, F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272284.CrossRefGoogle ScholarPubMed
Bolger, D., Coull, J. T., & Schön, D. (2014). Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. Journal of Cognitive Neuroscience, 26(3), 593605.CrossRefGoogle ScholarPubMed
Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic priming and audio–motor training affect speech perception. Acta Psychologica, 155, 4350.CrossRefGoogle ScholarPubMed
Cason, N., & Schön, D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 26522658.CrossRefGoogle Scholar
Christophe, A., Millotte, S., Bernal, S., & Lidz, J. (2008). Bootstrapping lexical and syntactic acquisition. Language and Speech, 51(1–2), 6175.CrossRefGoogle ScholarPubMed
Church, R. M., & Lacourse, D. M. (1998). Serial pattern learning of temporal intervals. Animal Learning & Behavior, 26(3), 272289.CrossRefGoogle Scholar
Cook, P., Rouse, A., Wilson, M., & Reichmuth, C. (2013). A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, 127(4), 412.CrossRefGoogle Scholar
Emmendorfer, A. K., Correia, J. M., Jansma, B. M., Kotz, S. A., & Bonte, M. (2020). ERP mismatch response to phonological and temporal regularities in speech. Scientific Reports, 10(1), 112.CrossRefGoogle Scholar
Garcia, M., & Ravignani, A. (2020). Acoustic allometry and vocal learning in mammals. Biology Letters, 16(7), 20200081.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906.CrossRefGoogle ScholarPubMed
Hannon, E. E., & Johnson, S. P. (2005). Infants use meter to categorize rhythms and melodies: Implications for musical structure learning. Cognitive Psychology, 50(4), 354377.CrossRefGoogle ScholarPubMed
Heinrich, T., Ravignani, A., & Hanke, F. H. (2020). Visual timing abilities of a harbour seal (Phoca vitulina) and a South African fur seal (Arctocephalus pusillus pusillus) for sub-and supra-second time intervals. Animal Cognition, 23(5): 851859.CrossRefGoogle Scholar
Heldstab, S. A., Isler, K., Schuppli, C., & van Schaik, C. P. (2020). When ontogeny recapitulates phylogeny: Fixed neurodevelopmental sequence of manipulative skills among primates. Science Advances, 6(30), eabb4685.CrossRefGoogle ScholarPubMed
Höhle, B. (2009). Bootstrapping mechanisms in first language acquisition. Linguistics, 47(2), 359382.CrossRefGoogle Scholar
Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 8591.CrossRefGoogle ScholarPubMed
Hyland Bruno, J. (2017). Song rhythm development in zebra finches. City University of New York.Google Scholar
Jones, M. R. (2010). Attending to sound patterns and the role of entrainment. In Nobre, A. C. & Coull, J. T. (eds.) Attention and time (pp. 317330). Oxford University Press.CrossRefGoogle Scholar
Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896910.CrossRefGoogle ScholarPubMed
Lattenkamp, E. Z., & Vernes, S. C. (2018). Vocal learning: A language-relevant trait in need of a broad cross-species approach. Current Opinion in Behavioral Sciences, 21, 209215.CrossRefGoogle Scholar
Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M, …Tchernichovski, O. (2013). Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature, 498(7452), 104108.CrossRefGoogle ScholarPubMed
Martins, P. T., & Boeckx, C. (2020). Vocal learning: Beyond the continuum. PLoS Biology, 18(3), e3000672.CrossRefGoogle ScholarPubMed
Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 417.CrossRefGoogle ScholarPubMed
Milne, A. J., & Herff, S. A. (2020). The perceptual relevance of balance, evenness, and entropy in musical rhythms. Cognition, 203, 104233.CrossRefGoogle ScholarPubMed
Miton, H., Wolf, T., Vesper, C., Knoblich, G., & Sperber, D. (2020). Motor constraints influence cultural evolution of rhythm. Proceedings of the Royal Society B, 287(1937), 20202001.CrossRefGoogle ScholarPubMed
Ng, L., Garcia, J. E., Dyer, A. G., & Stuart-Fox, D. (2020). The ecological significance of time sense in animals. Biological Reviews, 96(2), 526540.CrossRefGoogle ScholarPubMed
Nowicki, S., & Searcy, W. A. (2014). The evolution of vocal learning. Current opinion in Neurobiology, 28, 4853.CrossRefGoogle ScholarPubMed
Norton, P. (2019). Isochronous rhythmic organization of learned animal vocalizations. Doctoral dissertation.Google Scholar
Patek, S. N., & Caldwell, R. L. (2006). The stomatopod rumble: Low frequency sound production in Hemisquilla californiensis. Marine and Freshwater Behaviour and Physiology, 39(2), 99111.CrossRefGoogle Scholar
Patel, A. D. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception, 24(1), 99104.CrossRefGoogle Scholar
Patel, A., Iversen, J., Bregman, M., & Schulz, I. (2009). Studying synchronization to a musical beat in nonhuman animals. Annals of the New York Academy of Sciences, 1169(1), 459469.CrossRefGoogle ScholarPubMed
Ravignani, A. (2017). Interdisciplinary debate: Agree on definitions of synchrony. Nature, 545, 158.CrossRefGoogle Scholar
Ravignani, A., Bowling, D. L., & Fitch, W. (2014). Chorusing, synchrony, and the evolutionary functions of rhythm. Frontiers in Psychology, 5, 1118.CrossRefGoogle ScholarPubMed
Ravignani, A., Kello, C. T., De Reus, K., Kotz, S. A., Dalla Bella, S., Méndez-Aróstegui, M., …de Boer, B. (2019). Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Current Zoology, 65(1), 107120.CrossRefGoogle Scholar
Ravignani, A., & Madison, G. (2017). The paradox of isochrony in the evolution of human rhythm. Frontiers in Psychology, 8, 1820.CrossRefGoogle ScholarPubMed
Salami, A., Wåhlin, A., Kaboodvand, N., Lundquist, A., & Nyberg, L. (2016). Longitudinal evidence for dissociation of anterior and posterior MTL resting-state connectivity in aging: Links to perfusion and memory. Cerebral Cortex, 26(10), 39533963.CrossRefGoogle ScholarPubMed
Schusterman, R. J. (1977). Temporal patterning in sea lion barking (Zalophus californianus). Behavioral Biology, 20(3), 404408.CrossRefGoogle Scholar
Wilson, M., & Cook, P. F. (2016). Rhythmic entrainment: Why humans want to, fireflies can't help it, pet birds try, and sea lions have to be bribed. Psychonomic Bulletin & Review, 23(6), 16471659.CrossRefGoogle ScholarPubMed
Wirthlin, M., Chang, E. F., Knörnschild, M., Krubitzer, L. A., Mello, C. V., Miller, C. T., … Yartsev, M. M. (2019). A modular approach to vocal learning: Disentangling the diversity of a complex behavioral trait. Neuron, 104(1), 8799.CrossRefGoogle ScholarPubMed