Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra $\mathcal {B}(R)$ over a local domain R essentially of finite type over $\mathbb {C}$. We show that if R is normal and $\Delta $ is an effective $\mathbb {Q}$-Weil divisor on $\operatorname {Spec} R$ such that $K_R+\Delta $ is $\mathbb {Q}$-Cartier, then the BCM test ideal $\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ with respect to $\widehat {\mathcal {B}(R)}$ coincides with the multiplier ideal $\mathcal {J}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$, where $\widehat {R}$ and $\widehat {\mathcal {B}(R)}$ are the $\mathfrak {m}$-adic completions of R and $\mathcal {B}(R)$, respectively, and $\widehat {\Delta }$ is the flat pullback of $\Delta $ by the canonical morphism $\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$. As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.