No CrossRef data available.
Article contents
Causal dispositionalism in behaviour genetics
Published online by Cambridge University Press: 11 September 2023
Abstract
Causal dispositionalism developed in metaphysics of science offers a useful tool to conceptualize shallow causes in behaviour genetics, in a way such that (a) it accounts for complex aetiology and heterogeneity of effects, and (b) genetic causal contribution can be considered to be explanatory. Genes are thus causal powers that make a difference.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Anjum, R. L., & Mumford, S. (2018). Causation in science and the methods of scientific discovery. Oxford University Press.CrossRefGoogle Scholar
Cartwright, N. (1989). Nature's capacities and their measurements. Oxford University Press.Google Scholar
Cartwright, N. (2009). Causal laws, policy predictions and the need for genuine powers. In Handfield, T. (Ed.), Dispositions and causes (pp. 127–157). Oxford University Press.Google Scholar
Cartwright, N. (2011). A philosopher's view of the long road from RCTs to effectiveness. The Lancet, 377, 1400–1401.CrossRefGoogle Scholar
Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. The University of Chicago Press.CrossRefGoogle Scholar
Glennan, S. S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49–71.CrossRefGoogle Scholar
Mumford, S., & Anjum, R. L. (2011). Getting causes from powers. Oxford University Press.CrossRefGoogle Scholar
Rocca, E., & Anjum, R. L. (2020). Causal evidence and dispositions in medicine and public health. International Journal of Environmental Research and Public Health, 17(6), 1813.CrossRefGoogle Scholar
Waters, C. K. (2007). Causes that make a difference. The Journal of Philosophy, 104, 551–579.CrossRefGoogle Scholar
Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford University Press.Google Scholar
Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology & Philosophy, 25, 287–318.CrossRefGoogle Scholar
Target article
Building causal knowledge in behavior genetics
Related commentaries (23)
A disanalogy with RCTs and its implications for second-generation causal knowledge
Addressing genetic essentialism: Sharpening context in behavior genetics
All that glisters is not gold: Genetics and social science
Behavior genetics and randomized controlled trials: A misleading analogy
Behavior genetics: Causality as a dialectical pursuit
Benefits of hereditarian insights for mate choice and parenting
Building causal knowledge in behavior genetics without racial/ethnic diversity will result in weak causal knowledge
Causal dispositionalism in behaviour genetics
Drowning in shallow causality
Extensions of the causal framework to Mendelian randomisation and gene–environment interaction
Genes, genomes, and developmental process
Genetics can inform causation, but the concepts and language we use matters
Genome-wide association study and the randomized controlled trial: A false equivalence
Human genomic data have different statistical properties than the data of randomised controlled trials
Mechanistic understanding of individual outcomes: Challenges and alternatives to genetic designs
Meeting counterfactual causality criteria is not the problem
On the big list of causes
Polygene risk scores and randomized experiments
Shallow versus deep genetic causes
The providential randomisation of genotypes
Theory matters for identifying a causal role for genetic factors in socioeconomic outcomes
When local causes are more explanatorily useful
Where not to look for targets of social reforms and interventions, according to behavioral genetics
Author response
Causal complexity in human research: On the shared challenges of behavior genetics, medical genetics, and environmentally oriented social science