Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T23:51:27.825Z Has data issue: true hasContentIssue false

Non-symbolic and symbolic number and the approximate number system

Published online by Cambridge University Press:  15 December 2021

David Maximiliano Gómez*
Affiliation:
Institute of Education Sciences, Universidad de O'Higgins, 2841935Rancagua, Chile. [email protected]

Abstract

The distinction between non-symbolic and symbolic number is poorly addressed by the authors despite being relevant in numerical cognition, and even more important in light of the proposal that the approximate number system (ANS) represents rational numbers. Although evidence on non-symbolic number and ratios fits with ANS representations, the case for symbolic number and rational numbers is still open.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binzak, J. V., & Hubbard, E. M. (2020). No calculation necessary: Accessing magnitude through decimals and fractions. Cognition 199:104219.CrossRefGoogle ScholarPubMed
Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance 33(6):14101419.Google ScholarPubMed
Gabriel, F., Szucs, D., & Content, A. (2013). The mental representations of fractions: Adults’ same-different judgments. Frontiers in Psychology 4:385.CrossRefGoogle ScholarPubMed
Gómez, D. M., & Dartnell, P. (2019). Middle schoolers’ biases and strategies in a fraction comparison task. International Journal of Science and Mathematics Education 17:12331250.CrossRefGoogle Scholar
Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition 10(4):389395.CrossRefGoogle ScholarPubMed
Kallai, A. Y., & Tzelgov, J. (2012). When meaningful components interrupt the processing of the whole: The case of fractions. Acta Psychologica 139:358369.CrossRefGoogle ScholarPubMed
Morales, N., Dartnell, P., & Gómez, D. M. (2020). A study on congruency effects and numerical distance in fraction comparison by expert undergraduate students. Frontiers in Psychology 11:1190.CrossRefGoogle Scholar
Moyer, S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature 215:15191520.CrossRefGoogle ScholarPubMed
Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist 40(1):2752.CrossRefGoogle Scholar
Nuerk, H.-C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift für Psychologie 219(1):322.CrossRefGoogle Scholar
Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition 82:B25B33.CrossRefGoogle Scholar
Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction 28:6472.CrossRefGoogle Scholar
Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance 36(5):12271238.Google ScholarPubMed
Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education 15(2):154164.CrossRefGoogle Scholar