Transgressive segregation refers to the phenomenon whereby the progeny of a diverse cross exhibit phenotypes that fall outside the range of the parents for a particular trait of interest. Segregants that exceed the parental values in life-history traits contributing to survival and reproduction may represent beneficial new allelic combinations that are fitter than respective parental genotypes. In this research, we use geographically disparate paraquat-resistant biotypes of horseweed (Canada fleabane) [Erigeron canadensis L.; syn.: Conyza canadensis (L.) Cronquist] to explore transgressive segregation in biomass accumulation and the inheritance of the paraquat resistance trait in this highly self-fertilizing species. Results of this research indicate that the paraquat resistance traits in E. canadensis biotypes originating in California, USA, and Ontario, Canada, were not conferred by single major gene mechanisms. Segregating generations from crosses among resistant and susceptible biotypes all displayed transgressive segregation in biomass accumulation in the absence of the original selective agent, paraquat. However, when challenged with a discriminating dose of paraquat, progeny from the crosses of susceptible × resistant and resistant × resistant biotypes displayed contrasting responses with those arising from the cross of two resistant biotypes no longer displaying transgressive segregation. These results support the prediction that transgressive segregation is frequently expressed in self-fertilizing lineages and is positively correlated with the genetic diversity of the parental genotypes. When exposed to a new environment, transgressive segregation was observed regardless of parental identity or history. However, if hybrid progenies were returned to the parental environment with exposure to paraquat, the identity of the fittest genotype (i.e., parent or segregant) depends on the history of directional selection in the parental lineages and the dose to which the hybrid progeny was exposed. It is only in the original selective environment that the impact of allelic fixation on transgressive segregation can be observed.