Let $n\geqslant C$ for a large universal constant $C>0$ and let $B$ be a convex body in $\mathbb{R}^{n}$ such that for any $(x_{1},x_{2},\ldots ,x_{n})\in B$, any choice of signs $\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2},\ldots ,\unicode[STIX]{x1D700}_{n}\in \{-1,1\}$ and for any permutation $\unicode[STIX]{x1D70E}$ on $n$ elements, we have $(\unicode[STIX]{x1D700}_{1}x_{\unicode[STIX]{x1D70E}(1)},\unicode[STIX]{x1D700}_{2}x_{\unicode[STIX]{x1D70E}(2)},\ldots ,\unicode[STIX]{x1D700}_{n}x_{\unicode[STIX]{x1D70E}(n)})\in B$. We show that if $B$ is not a cube, then $B$ can be illuminated by strictly less than $2^{n}$ sources of light. This confirms the Hadwiger–Gohberg–Markus illumination conjecture for unit balls of $1$-symmetric norms in $\mathbb{R}^{n}$ for all sufficiently large $n$.