Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T11:17:46.616Z Has data issue: false hasContentIssue false

A K3 Surface Associated With Certain Integral Matrices Having Integral Eigenvalues

Published online by Cambridge University Press:  20 November 2018

Ronald van Luijk*
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720-3840 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we will show that there are infinitely many symmetric, integral 3 × 3 matrices, with zeros on the diagonal, whose eigenvalues are all integral. We will do this by proving that the rational points on a certain non-Kummer, singular $\text{K3}$ surface are dense. We will also compute the entire Néron–Severi group of this surface and find all low degree curves on it.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[Ar] Artin, M., On isolated rational singularities of surfaces. Amer. J. Math. 88(1966), 129136.Google Scholar
[BPV] Barth, W., Peters, C., and Van de Ven, A., Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 4, Springer-Verlag, 1984.Google Scholar
[Be] Beukers, F., Problem 10. Nieuw Archief Wiskd. 1(2000), no. 4, 413417.Google Scholar
[BLV] Beukers, F., van Luijk, R., and Vidunas, R., A linear algebra exercise. Nieuw Archief Wiskd. 3(2002), no. 2, 139140.Google Scholar
[BT] Bogomolov, F., F. and Tschinkel, Yu., Density of rational points on elliptic K3 surfaces. Asian J. Math. 4(2000), no. 2, 351368.Google Scholar
[Br] Bremner, A., On squares of squares. II. Acta Arith. 99(2001), no. 3, 289308.Google Scholar
[Ch] Chinburg, T., Minimal models of curves over Dedekind rings. In: Arithmetic Geometry, Springer, New York, 1986, pp. 309326.Google Scholar
[Gr1] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Seconde partie, Inst. Hautes études Sci. Publ. Math. 24, 1965.Google Scholar
[Gr2] Grothendieck, A., et al. Théorie des Intersections et Théorème de Riemann-Roch. Lect. Notes in Math. 225, Springer-Verlag, Berlin, 1971.Google Scholar
[Ha] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.Google Scholar
[In] Inose, H., On certain Kummer surfaces which can be realized as non-singular quartic surfaces 3 . J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(1976), no. 3, 545560.Google Scholar
[Lu] van Luijk, R., An elliptic K3 surface associated to Heron triangles. To appear, J. Number Theory.Google Scholar
[Ni] Nikulin, V., Integral symmetric bilinear forms and some of their applications. Math. USSR Izvestija 14(1980), no. 1, 103167.Google Scholar
[PS] Pjateckii-Shapiro, I., and Shafarevich, I., Torelli's theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35(1971), 530572.Google Scholar
[SD] Saint-Donat, B., Projective models of K-3 surfaces. Amer. J. Math. 96(1974), 602639.Google Scholar
[Sh] Shioda, T., On the Mordell-Weil lattices. Comment. Math. Univ. St Paul. 39(1990), no. 2, 211240.Google Scholar
[SI] Shioda, T., and Inose, H., On singular K3 surfaces. In: Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, pp. 119136.Google Scholar
[Si1] Silverman, J. H., The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.Google Scholar
[Si2] Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 151, Springer-Verlag, New York, 1994.Google Scholar
[Ta] Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable. IV. Lect. Notes in Math. 476, Springer-Verlag, Berlin, 1975, pp. 3352.Google Scholar