Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T16:20:29.509Z Has data issue: false hasContentIssue false

THE THIRD HANKEL DETERMINANT FOR INVERSE COEFFICIENTS OF CONVEX FUNCTIONS

Published online by Cambridge University Press:  02 May 2023

MOHSAN RAZA*
Affiliation:
Department of Mathematics, Government College University, Faisalabad, Pakistan
AMINA RIAZ
Affiliation:
Department of Mathematics, COMSATS University Isalamabad, Lahore Campus, Pakistan e-mail: [email protected]
DEREK K. THOMAS
Affiliation:
School of Mathematics and Computer Science, Swansea University, Bay Campus, Swansea SA1 8EN, UK e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

The sharp bound for the third Hankel determinant for the coefficients of the inverse function of convex functions is obtained, thus answering a recent conjecture concerning invariance of coefficient functionals for convex functions.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathcal {A}$ denote the class of normalised analytic functions f in the open unit disc $\mathbb {D}:=\{ z:\vert z\vert <1,\ z\in \mathbb {C} \} $ with Taylor expansion

(1.1) $$ \begin{align} f(z)=z+\overset{\infty }{\sum_{n=2}}a_{n}z^{n},\ \ \ \ z\in \mathbb{D} \end{align} $$

and let $\mathcal {S}$ denote the subclass of functions in $\mathcal {A}$ which are univalent in $\mathbb {D}$ . The classes $\mathcal {S}^{\ast }$ of starlike functions and $\mathcal {C}$ of convex functions are subclasses of $ \mathcal {S}$ and are analytically defined respectively as

(1.2) $$ \begin{align} \mathcal{S}^{\ast } &=\bigg\{ f\in \mathcal{A}:{\mathrm{Re}}\bigg( \frac{zf^{\prime }(z)}{f(z)}\bigg)>0, \ z\in \mathbb{D}\bigg\}, \notag \\ \mathcal{C} &=\bigg\{ f\in \mathcal{A}:{\mathrm{Re}}\bigg( 1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\bigg) >0, \ z\in \mathbb{D}\bigg\}. \end{align} $$

For any univalent function f, there exists an inverse function $f^{-1}$ defined on some disc $\vert w\vert \leq r_{0}(f),$ with Taylor series expansion

(1.3) $$ \begin{align} f^{-1}( w) =w+A_{2}w^{2}+A_{3}w^{3}+\cdots. \end{align} $$

The qth Hankel determinant for analytic functions $f\in \mathcal {A}$ was introduced by Pommerenke [Reference Pommerenke11] and is given by

$$ \begin{align*} H_{q}( n) (f):=\left\vert \begin{array}{llll} a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\ \vdots & \vdots & \ldots & \vdots \\ a_{n+q-1} & a_{n+q} & \ldots & a_{n+2q-2} \end{array} \right\vert , \end{align*} $$

where $n\geq 1$ and $q\geq 1.$ Many authors have studied the Hankel determinants $H_{2}( 2) (f)=a_{2}a_{4}-a_{3}^{2}$ and $H_{2}( 3) (f)=a_{3}a_{5}-a_{4}^{2}$ of order 2 (see, for example, [Reference Cho, Kowalczyk, Kwon, Lecko and Sim2, Reference Janteng, Halim and Darus3, Reference Lee, Ravichandran and Supramanian9, Reference Riaz, Raza and Thomas12, Reference Sim, Lecko and Thomas14, Reference Sokól and Thomas15]), whereas $H_{2}( 1) (f)=a_{2}^{2}-a_{3}$ is classical. Sharp bounds for

(1.4) $$ \begin{align} \vert H_{3}( 1) (f)\vert =\vert 2a_{2}a_{3}a_{4}-a_{3}^{3}-a_{4}^{2}+a_{3}a_{5}-a_{2}^{2}a_{5}\vert \end{align} $$

are more difficult to find, but some notable recent results have been found, for example, [Reference Banga and Kumar1, Reference Kowalczyk, Lecko and Sim4, Reference Kowalczyk, Lecko, Lecko and Sim5, Reference Kwon, Lecko and Sim7, Reference Lecko, Sim and Smiarowska8, Reference Raducanu and Zaprawa13]. In particular, Kowalczyk et al. [Reference Kowalczyk, Lecko, Lecko and Sim5] obtained the sharp bound for $\vert H_{3}( 1) (f)\vert $ for $f\in \mathcal {C}$ by showing that

$$ \begin{align*} \vert H_{3}( 1) (f)\vert \leq \tfrac{4}{135}. \end{align*} $$

In this paper, we find the sharp bound for $|H_{3}( 1) (f^{-1})|$ for the inverse function when $f\in \mathcal {C}.$ Our result demonstrates a noninvariance property for $f\in \mathcal {C}$ between corresponding functionals discussed in [Reference Kowalczyk, Lecko, Lecko and Sim5, Reference Thomas16], thus settling a conjecture made in [Reference Kowalczyk, Lecko, Lecko and Sim5].

Let $\mathcal {P}$ denote the class of analytic functions p defined for $ z\in \mathbb {D}$ by

(1.5) $$ \begin{align} p(z)=1+\sum_{n=1}^{\infty }c_{n}z^{n} \end{align} $$

with positive real part in $\mathbb {D}$ . We will use the following lemma concerning the coefficients of functions in $ \mathcal {P}$ .

Lemma 1.1 [Reference Kwon, Lecko and Sim6, Reference Libera and Zlotkiewicz10].

Let $p\in \mathcal {P}$ be given by (1.5) with $c_{1}>0$ . Then,

(1.6) $$ \begin{align} 2c_{2} &=c_{1}^{2}+\delta (4-c_{1}^{2}),\end{align} $$
(1.7) $$ \begin{align}4c_{3} &=c_{1}^{3}+2(4-c_{1}^{2})c_{1}\delta -(4-c_{1}^{2})c_{1}\delta ^{2}+2(4-c_{1}^{2})(1-|\delta |^{2})\eta ,\end{align} $$
(1.8) $$ \begin{align}8c_{4} &=c_{1}^{4}+(4-c_{1}^{2})\delta (c_{1}^{2}(\delta ^{2}-3\delta +3)+4\delta )-4(4-c_{1}^{2})(1-|\delta |^{2})(c_{1}(\delta -1)\eta \nonumber \\ &\quad +\bar{\delta}\eta ^{2}-(1-|\eta |^{2})\rho ), \end{align} $$

for some $\delta $ , $\eta $ and $\rho $ such that $|\delta |\leq 1$ , $|\eta |\leq 1$ and $|\rho |\leq 1$ .

2 Main result

Theorem 2.1. Let $f\in \mathcal {C}$ be given by (1.1). Then,

$$ \begin{align*} |H_{3}(1)(f^{-1})|\leq \tfrac{1}{36}. \end{align*} $$

The inequality is sharp for the function $f_{0}\in \mathcal {C}$ given by

(2.1) $$ \begin{align} f_{0}(z)=\int_{0}^{z}\frac{dx}{( 1-x^{3}) ^{2/3}}=\hspace{0.5pt} {}_{2}{F}_{1}\bigg( \frac{1}{3},\frac{2}{3};\frac{4}{3};z^{3}\bigg) =z+\frac{1}{ 6}z^{4}+\frac{5}{63}z^{7}+\cdots. \end{align} $$

Proof. Let $f\in \mathcal {C}.$ Then from (1.2), there exists a function $p\in \mathcal {P}$ such that

(2.2) $$ \begin{align} 1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}=p(z). \end{align} $$

Since

(2.3) $$ \begin{align} 1+\frac{zf^{\prime \prime }( z) }{f^{\prime }( z) } &=1+2a_{2}z+( 6a_{3}-4a_{2}^{2}) z^{2}+( 12a_{4}-18a_{2}a_{3}+8a_{2}^{3}) z^{3} \notag \\ &\quad +( 20a_{5}-32a_{2}a_{4}-18a_{3}^{2}+48a_{3}a_{2}^{2}-16a_{2}^{4}) z^{4}+\cdots , \end{align} $$

we obtain by comparing coefficients from (1.5), (2.2) and (2.3),

(2.4) $$ \begin{align} a_{2}& =\tfrac{1}{2}c_{1},\end{align} $$
(2.5) $$ \begin{align}a_{3}& =-\tfrac{1}{6}c_{2}+\tfrac{1}{6}c_{1}^{2},\end{align} $$
(2.6) $$ \begin{align}a_{4}& =\tfrac{1}{24}c_{1}^{3}+\tfrac{1}{8}c_{1}c_{2}+\tfrac{1}{12}c_{3},\end{align} $$
(2.7) $$ \begin{align}a_{5}& =\tfrac{1}{120}c_{1}^{4}+\tfrac{1}{20}c_{2}c_{1}^{2}+\tfrac{1}{15} c_{1}c_{3}+\tfrac{1}{40}c_{2}^{2}+\tfrac{1}{20}c_{4}. \end{align} $$

Next note that since $f( f^{-1}(w)) =w$ , using (1.3), it follows that

(2.8) $$ \begin{align} A_{2}& =-a_{2},\end{align} $$
(2.9) $$ \begin{align}A_{3}& =2a_{2}^{2}-a_{3},\end{align} $$
(2.10) $$ \begin{align}A_{4}& =5a_{2}a_{3}-5a_{2}^{3}-a_{4},\end{align} $$
(2.11) $$ \begin{align}A_{5}& =14a_{2}^{4}-21a_{3}a_{2}^{2}+6a_{2}a_{4}+3a_{3}^{2}-a_{5}.\end{align} $$

Substituting (2.4)–(2.7) into (2.8)–(2.11), respectively, we obtain

(2.12) $$ \begin{align} A_{2}& =-\tfrac{1}{2}c_{1},\end{align} $$
(2.13) $$ \begin{align}A_{3}& =\tfrac{1}{3}c_{1}^{2}-\tfrac{1}{6}c_{2},\end{align} $$
(2.14) $$ \begin{align}A_{4}& =-\tfrac{1}{4}c^{3}+\tfrac{7}{24}c_{1}c_{2}-\tfrac{1}{12}c_{3},\end{align} $$
(2.15) $$ \begin{align}A_{5}& =\tfrac{1}{5}c^{4}-\tfrac{23}{60}c_{1}^{2}c_{2}+\tfrac{11}{60}c_{1}c_{3}+ \tfrac{7}{120}c_{2}^{2}-\tfrac{1}{20}c_{4}. \end{align} $$

Using (2.12)–(2.15) in (1.4),

$$ \begin{align*} H_{3}(1)(f^{-1}) & = \tfrac{1}{34560} (16c_{1}^{6}-96c_{1}^{4}c_{2}+48c_{1}^{3}c_{3}+156c_{1}^{2}c_{2}^{2}-144c_{1}^{2}c_{4} \\ & \quad + 144c_{1}c_{2}c_{3}-176c_{2}^{3}+288c_{2}c_{4}-240c_{3}^{2}), \end{align*} $$

which after simplification, noting that since both the class $\mathcal {C}$ and the functional $H_{3}(1)(f^{-1})$ are rotationally invariant (so that $ c\in \lbrack 0,2]$ ), and using (1.6)–(1.8) gives

$$ \begin{align*} H_{3}(1)(f^{-1})=\tfrac{1}{34560}( v_{1}(c,\delta )+v_{2}(c,\delta )\eta +v_{3}(c,\delta )\eta ^{2}+\psi (c,\delta ,\eta )\rho ) , \end{align*} $$

where $\delta ,\ \eta $ , $\rho \in \overline {\mathbb {D}}$ and

$$ \begin{align*} v_{1}(c,\delta )& :=\delta ^{2}(4-c^{2})^{2}(-16\delta +10c^{2}\delta +3c^{2}+3c^{2}\delta ^{2}), \\ v_{2}(c,\delta )& :=-12\delta (4-c^{2})^{2}(1-|\delta |^{2})c(\delta +1), \\ v_{3}(c,\delta )& :=-12(4-c^{2})^{2}(1-|\delta |^{2})(5+\delta ^{2}), \\ \psi (c,\delta ,\eta )& :=72\delta (4-c^{2})^{2}(1-|\delta |^{2})(1-|\eta |^{2}). \end{align*} $$

Next, using $|\delta |=x,|\eta |=y$ and the fact $|\rho |\leq 1$ , we obtain

$$ \begin{align*} H_{3}(1)(f^{-1}) & \leq \tfrac{1}{34560}( |v_{1}(c,x)|+|v_{2}(c,x)|y+|v_{3}(c,x)|y^{2}+|\psi (c,x,y)|) \\ & \leq G(c,x,y), \end{align*} $$

where

$$ \begin{align*} G(c,x,y):=\tfrac{1}{34560}( g_{1}(c,x)+g_{2}(c,x)y+g_{3}(c,x)y^{2}+g_{4}(c,x)(1-y^{2})) , \end{align*} $$

with

$$ \begin{align*} g_{1}(c,x)& :=x^{2}(4-c^{2})^{2}(16x+10c^{2}x+3c^{2}+3c^{2}x^{2}), \\ g_{2}(c,x)& :=12x(4-c^{2})^{2}(1-x^{2})c(x+1), \\ g_{3}(c,x)& :=12(4-c^{2})^{2}(1-x^{2})(5+x^{2}), \\ g_{4}(c,x)& :=72x(4-c^{2})^{2}(1-x^{2}). \end{align*} $$

Thus, we need to maximise $G(c,x,y)$ over the closed cuboid $\Lambda :[0,2]\times \lbrack 0,1]\times \lbrack 0,1]$ . To do this, we find the maximum values in the interior of $\Lambda $ , in the interior of the six faces, at the vertices and on the 12 edges.

I. The interior of $\Lambda $ . Let $(c,x,y)\in (0,2)\times (0,1)\times (0,1)$ . We can write

$$ \begin{align*} 34560\, G(c,x,y)=g_{1}(c,x)+g_{4}(c,x)+g_{2}(c,x)y+( g_{3}(c,x)-g_{4}(c,x)) y^{2}. \end{align*} $$

Since $g_{2}(c,x)>0$ and

$$ \begin{align*} ( g_{3}(c,x)-g_{4}(c,x)) =12( 4-c^{2}) ( 1-x^{2})>0, \end{align*} $$

for $c\in (0,2), x\in (0,1)$ ,

$$ \begin{align*} G(c,x,y) < G(c,x,1):=\tfrac{1}{34560}( g_{1}(c,x)+g_{2}(c,x)+g_{3}(c,x)) \end{align*} $$

for $c\in (0,2), x\in (0,1)$ and $y<1$ . Thus, $G(c,x,y)$ does not have a maximum for $(c,x,y)\in (0,2)\times (0,1)\times [0,1).$

II. The interiors of the faces of $\Lambda $ . We deal with each face in turn, noting that we do not need to consider the face $y=0$ after Step I.

On the face $c=0$ , $G(c,x,y)$ reduces to

$$ \begin{align*} k_{1}(x,y):=G(0,x,y)=\frac{3(1-x^{2})(x-1)(x-5)y^{2}-2x(7x^{2}-9)}{540}, \quad x, y\in (0,1), \end{align*} $$

and we see that $k_{1}$ has no critical points in $(0,1)\times (0,1)$ since

$$ \begin{align*} \frac{\partial k_{1}}{\partial y}=\frac{(1-x^{2})(x-1)(x-5)y}{90}\neq 0, \quad x, y\in (0,1). \end{align*} $$

On the face $c=2$ , $G(c,x,y)$ reduces to

$$ \begin{align*} G(2,x,y)=0, \quad x, y\in (0,1). \end{align*} $$

On the face $x=0$ , $G(c,x,y)$ reduces to

$$ \begin{align*} k_{2}(c,y):=G(c,0,y)=\frac{(4-c^{2})^{2}y^{2}}{576}, \quad c\in (0,2), y\in (0,1), \end{align*} $$

and we see that $k_{2}$ has no critical point in $(0,2)\times (0,1)$ since

$$ \begin{align*} \frac{\partial k_{2}}{\partial y}=\frac{(4-c^{2})^{2}y}{288}\neq 0, \quad c\in (0,2), y\in (0,1). \end{align*} $$

On the face $x=1$ , $G(c,x,y)$ reduces to

$$ \begin{align*} k_{3}(c,y):=G(c,1,y)=\frac{c^{6}-7c^{4}+8c^{2}+16}{2160}, \quad c\in (0,2). \end{align*} $$

Solving ${\partial k_{3}}/{\partial c}=0$ , we obtain a maximum value $ {25}/{2916}<{1}/{36}$ at $c:=c_{0}={\sqrt {6}}/{3}$ .

Finally, on the face $y=1$ , $G(c,x,y)$ reduces to

$$ \begin{align*} k_{4}(c,x):=G(c,x,1)=\frac{(4-c^{2})^{2}}{34560}\left( \begin{array}{@{}l@{}} 16x^{3}+10x^{3}c^{2}+3x^{2}c^{2}+3x^{4}c^{2}+12x^{2}c \\ -\,12x^{4}c+12xc-12x^{3}c+60-48x^{2}-12x^{4} \end{array} \right). \end{align*} $$

Differentiating $k_{4}(c,x)$ with respect to c and $x$ , we obtain

$$ \begin{align*} \frac{\partial k_{4}}{\partial x}=\frac{(4-c^{2})^{2}}{34560}\left( \begin{array}{@{}c@{}} (3c^{2}-12c-12)x^{4}+(10c^{2}-12c+16)x^{3} \\ +\,(12c-48+3c^{2})x^{2}+12xc+60 \end{array} \right) \end{align*} $$

and

$$ \begin{align*} \frac{\partial k_{4}}{\partial c}=\frac{-4(4-c^{2})}{34560}\left( \begin{array}{@{}c@{}} x^{2}(6x^{2}+20x+6)c^{5}+12x(1-x^{2})(x+1)c^{4} \\ -15x^{2}(x+3)(3x+1)c^{3}-84x(1-x^{2})(x+1)c^{2} \\ +\,(336x^{3}+60+48x^{2}+84x^{4})c+192x(1-x^{2})(x+1) \end{array} \right). \end{align*} $$

Now equating both partial derivatives to zero, a numerical calculation shows that the only real roots are at $(c,x)=(7.03237\ldots , -5.85791\ldots ), (-0.95398, 1.04715\ldots )$ and $(c,x)=(0,0).$ We see that $c=x=0$ gives a maximum value ${1}/{36}$ and all other critical points are saddle points so there does not exist a maximum inside $(0,2)\times (0,1)$ .

III. The vertices of $\Lambda $ . We have

$$ \begin{align*} G(0,0,0)& =0,~~~G(0,0,1)=\tfrac{1}{36},~~~G(0,1,0)=\tfrac{1}{135},~~~G(0,1,1)= \tfrac{1}{135}, \\ &G(2,0,0) =G(2,0,1)=G(2,1,0)=G(2,1,1)=0. \end{align*} $$

IV. The interiors of the edges of $\Lambda $ . Finally, we find the points of the maxima of $G(c,x,y)$ on the 12 edges of $ \Lambda $ :

$$ \begin{align*} G(c,0,0)=0; \end{align*} $$
$$ \begin{align*} G(c,0,1) =\frac{(4-c^{2})^{2}}{576}\leq G(0,0,1) =\frac{1}{36}, \quad c\in (0,2); \end{align*} $$
$$ \begin{align*} G(c,1,0) =\frac{c^{6}-7c^{4}+8c^{2}+16}{2160}\leq G(\lambda _{1},1,0) =\frac{25}{2916}<\dfrac{1}{36}, \quad c\in (0,2), \end{align*} $$

where

$$ \begin{align*} c:=\lambda _{1}=\frac{\sqrt{6}}{3}; \end{align*} $$
$$ \begin{align*} G(0,x,0)=\frac{-x(7x^{2}-9)}{270}\leq G\left(0,\frac{\sqrt{21}}{7},0\right)=\frac{\sqrt{ 21}}{315}<\dfrac{1}{36}, \quad x\in (0,1); \end{align*} $$
$$ \begin{align*} G(0,x,1)=\frac{-3x^{4}+4x^{3}-12x^{2}+15}{540}\leq G(0,0,1)=\frac{1}{36} , \quad x\in (0,1); \end{align*} $$
$$ \begin{align*} G(2,x,0)& =0, \quad x\in (0,1); \end{align*} $$
$$ \begin{align*} G(2,x,1)& =0, \quad x\in (0,1); \end{align*} $$
$$ \begin{align*}G(0,0,y)& =\tfrac{1}{36}y^{2}\leq \tfrac{1}{36}, \quad y\in (0,1); \end{align*} $$
$$ \begin{align*} G(0,1,y)& =\tfrac{1}{135}, \quad y\in (0,1); \end{align*} $$
$$ \begin{align*}G(2,0,y)& =0, \quad y\in (0,1); \end{align*} $$
$$ \begin{align*} G(2,1,y)& =0, \quad y\in (0,1). \end{align*} $$

Thus, there is only one maximum point at $( 0,0,1)$ where $G(0,0,1)={1}/{36}$ . We therefore conclude that

$$ \begin{align*} |H_{3}(1)(f^{-1})|\leq \tfrac{1}{36}. \end{align*} $$

The result is sharp for $f_{0}$ given in (2.1), which is equivalent to choosing $a_{2}=a_{3}=a_{5}=0$ and $a_{4}=\tfrac 16.$ From (2.8)–(2.11), we see that $A_{2}=A_{3}=A_{5}=0$ and $ A_{4}=\tfrac 16$ , which from (1.4) gives $|H_{3}(1)(f^{-1})|={1}/{36}.$ This completes the proof.

References

Banga, S. and Kumar, S. S., ‘The sharp bounds of the second and third Hankel determinants for the class ${\mathbf{\mathcal{SL}}}^{\ast }$ ’, Math. Slovaca 70 (2020), 849862.CrossRefGoogle Scholar
Cho, N. E., Kowalczyk, B., Kwon, O. S., Lecko, A. and Sim, Y. J., ‘The bounds of some determinants for starlike functions of order alpha’, Bull. Malays. Math. Sci. Soc. 41 (2018), 523535.CrossRefGoogle Scholar
Janteng, A., Halim, S. A. and Darus, M., ‘Coeffcient inequality for a function whose derivative has a positive real part’, J. Inequal. Pure Appl. Math. 7(2) (2006), 15.Google Scholar
Kowalczyk, B., Lecko, A., Lecko, M. and Sim, Y. J., ‘The sharp bound of the third Hankel determinant for some classes of analytic functions’, Bull. Korean Math. Soc. 55 (2018), 18591868.Google Scholar
Kowalczyk, B., Lecko, A. and Sim, Y. J., ‘The sharp bound of the Hankel determinant of the third kind for convex functions’, Bull. Aust. Math. Soc. 97 (2018), 435445.CrossRefGoogle Scholar
Kwon, O. S., Lecko, A. and Sim, Y. J., ‘On the fourth coefficient of functions in the Carathéodory class’, Comput. Methods Funct. Theory 18 (2018), 307314.CrossRefGoogle Scholar
Kwon, O. S., Lecko, A. and Sim, Y. J., ‘The bound of the Hankel determinant of the third kind for starlike functions’, Bull. Malays. Math. Sci. Soc. 42 (2019), 767780.CrossRefGoogle Scholar
Lecko, A., Sim, Y. J. and Smiarowska, B., ‘The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2’, Complex Anal. Oper. Theory 13 (2019), 22312238.CrossRefGoogle Scholar
Lee, S. K., Ravichandran, V. and Supramanian, S., ‘Bound for the second Hankel determinant of certain univalent functions’, J. Inequal. Appl. 2013(281) (2013), 117.CrossRefGoogle Scholar
Libera, R. J. and Zlotkiewicz, E. J., ‘Early coefficients of the inverse of a regular convex functions’, Proc. Amer. Math. Soc. 85 (1982), 225230.CrossRefGoogle Scholar
Pommerenke, C., ‘On the coefficients and Hankel determinants of univalent functions’, J. Lond. Math. Soc. (2) 14 (1966), 111122.CrossRefGoogle Scholar
Raducanu, D. and Zaprawa, P., ‘Second Hankel determinant for the close-to-convex functions’, C. R. Math. Acad. Sci. Paris 355(10) (2017), 10631071.CrossRefGoogle Scholar
Riaz, A., Raza, M. and Thomas, D. K., ‘Hankel determinants for starlike and convex functions associated with sigmoid functions’, Forum Math. 34 (2022), 137156.CrossRefGoogle Scholar
Sim, Y. J., Lecko, A. and Thomas, D. K., ‘The second Hankel determinant for strongly convex and Ozaki close-to-convex functions’, Ann. Mat. Pura Appl. (4) 200 (2021), 25152533.CrossRefGoogle Scholar
Sokól, J. and Thomas, D. K., ‘The second Hankel determinant for alpha-convex functions’, Lith. Math. J. 58 (2018), 212218.CrossRefGoogle Scholar
Thomas, D. K., ‘Coefficient invariances for convex functions’, Congressio Mathematica VIII, to appear, arXiv:2212.04929.Google Scholar