Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T18:42:22.514Z Has data issue: false hasContentIssue false

Laser-induced fusion detonation wave

Published online by Cambridge University Press:  11 April 2016

S. Eliezer
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain Applied Physics Division, Soreq NRC, Yavne, Israel
A. Ravid
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel
Z. Henis
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel Racah Institute of Physics, Hebrew University, Jerusalem, Israel
N. Nissim*
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel
J.M. Martinez Val
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: N. Nissim, Applied Physics Division, Soreq NRC, Yavne, Israel. E-mail: [email protected]

Abstract

Development of a detonation wave due to α heating following short pulse laser irradiation in pre-compressed deuterium–tritium (DT) plasma is considered. The laser parameters required for development of a detonation wave are calculated. We find that a laser irradiance and energy of IL = 1.75 × 1023 W/cm2 and 12.8 kJ accordingly during 1.0 ps in a pre-compressed target at 900 g/cm3 creates an α heating fusion detonation wave. In this case, the nuclear fusion ignition conditions for the pre-compressed DT plasma are achieved along the detonation wave orbit.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.CrossRefGoogle Scholar
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermonuclear gain of ICF targets with direct heating of the ignitor. J. Sov. Laser Res. 13, 396399.Google Scholar
Bosch, H.S. & Hale, G.M. (1992). Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611631.CrossRefGoogle Scholar
Browne, S., Ziegler, J. & Shepherd, J.E. (2008). Numerical Solution Methods for Shock and Detonation Jump Conditions. GALCIT Report FM2006.006.Google Scholar
Chu, M.S. (1972) The rmonuclear reaction waves at high densities. Phys. Fluids 15, 413422.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Boca Raton, Florida: CRC Press.Google Scholar
Eliezer, S., Henis, Z., Nissim, N., Pinhasi Vinikman, S., Martinez Val, J.M. (2015). Introducing a two temperature plasma ignition in inertial confined targets under the effect of relativistic shock waves: The case of DT and pB11 (2015). Laser Part. Beams 33, 577589.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (1998). Proton-boron 11 fusion reactions induced by heat-detonation burning waves. Laser Part. Beams 16, 581598.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Martinez Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585.Google Scholar
Eliezer, S., Nissim, N., Pinhasi, V.S., Raicher, E. & Martinez Val, J.M. (2014a). Ultrafast ignition with relativistic shock waves induced by high power lasers. High Power Laser Sci. Eng. 2, 10 pages, doi: 10.1017/hpl.2014.24.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Raicher, E. & Martinez Val, J.M. (2014b). Relativistic shock waves induced by ultra-high laser pressure. Laser Part. Beams 32, 243251.Google Scholar
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014c). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1-4.Google Scholar
Fortov, V.E. & Lomonosov, I.V. (2010). Shock waves and equations of state of matter. Shock Waves 20, 5371.CrossRefGoogle Scholar
Guskov, S.Y. (2013). Fast ignition of inertial confinement fusion targets, Plasma Phys. Rep. 39, 150.CrossRefGoogle Scholar
Guskov, S.Y. & Rozanov, V.B. (1993). Ignition and burn propagation in ICF targets. In Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise (Velarde, G., Ronen, Y. and Martinez Val, J.M., Eds.), pp. 293320. Boca Raton, Florida: CRC Press.Google Scholar
Hora, H. (1991). Plasmas of High Temperatures and Density. Heidelberg: Springer.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev. Lett. 53, 16501653.Google Scholar
Lalousis, P., Foldes, I.B. & Hora, H. (2012). Ultra-high acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.Google Scholar
Lalousis, P., Hora, H., Eliezer, S., Martinez Val, J.M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013) Shock Mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion, Phys. Lett. A 377, 885.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics. 2 edn. Oxford: Pergamon Press.Google Scholar
Landau, L.D. & Stanyukovich, K.P. (1945). On the study of detonation of condensed explosives. Dokl. Akad. Nauk SSSR 46, 339402.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002/1-4.CrossRefGoogle Scholar
Nuckolls, J.H., Wood, L., Thiessen, A. & Zimmermann, G.B. (1972). Laser compression of matter to super-high densities: Thermonuclear applications. Nature 239, 139142.Google Scholar
Tabak, M.E., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Taub, A.H. (1948). Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328334.Google Scholar
Velarde, G. & Carpintero-Santamaria, N. eds. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. UK: Foxwell and Davies Pub.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press Publications.Google Scholar