Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T00:02:15.602Z Has data issue: false hasContentIssue false

Le syndrome hématopoïétique induitpar une irradiation accidentelle : évaluation et traitements possibles

Published online by Cambridge University Press:  03 June 2006

J.-M. Bertho*
Affiliation:
IRSN, DRPH/SRBE, Laboratoire de thérapie cellulaire et de radioprotection accidentelle, 92262 Fontenay-aux-roses Cedex, France
Get access

Abstract

Le syndrome hématopoïétique induit par une irradiation accidentelle reste difficile à traiter, essentiellement du fait de l’hétérogénéité de l’irradiation. La conséquence est qu’il y a toujours un territoire médullaire partiellement protégé de l’irradiation. Le choix d’une stratégie thérapeutique va dépendre essentiellement de l’évaluation des dommages radio-induits à la moelle osseuse, telle qu’elle peut être faite à partir de différents bio-indicateurs de dose ou de dommages comme le suivi de la concentration sanguine de Flt3 ligand. Les options thérapeutiques restent limitées à la greffe de cellules souches hématopoïétiques ou aux traitements de soutien. Récemment, de nouvelles approches de thérapie cellulaire autologue ont été proposées, et ont apporté un éclairage nouveau sur le syndrome de défaillance multi-viscérale radio-induit. D’autres résultats récents du laboratoire montrent que parmi les choix possibles, la stimulation de l’hématopoïèse résiduelle par l’injection de cytokines telles que le G-CSF reste l’une des options thérapeutiques les plus intéressantes. Ces donnés nouvelles soulignent l’importance de la notion d’hématopoïèse résiduelle, mais aussi le fait que les mécanismes de régulation de l’hématopoïèse résiduelle après irradiation restent mal connus.

Type
Other
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AIEA (2001) Cytogenetic analysis for dose assessment: A manual. Technical reports series N° 405, AIEA, Vienna.
Asano S. (2005) Multi-organ involvement: Lessons from the experience of one victim of the Tokai-mura criticality accident, Br. J. Radiol. 27(sup), 9-12.
Baranov, A.E., Selidovkin, G.D., Butturini, A., Gale, R.P. (1994) Hematopoietic recovery after 10 Gy acute total body radiation, Blood 83, 596-599.
Barrett, A., Jacobs, A., Kohn, J., Raymond, J., Powles, R.L. (1982) Changes in serum amylase and its isoenzymes after whole body irradiation, Br. Med. J. 285, 170-171. CrossRef
Bertho, J.M., Frick, J., Demarquay, C., Lauby, A., Mathieu, E., Dudoignon, N., Jacquet, N., Chau, Q., Joubert, C., Chapel, A., Lopez, M., Aigueperse, J., Gorin, N.C., Gourmelon, P., Thierry, D. (2002) Reinjection of ex vivo expanded primate bone marrow mononuclear cells strongly reduces radiation-induced aplasia, J. Hematother. Stem Cell Res. 11, 549-564. CrossRef
Bertho, J.M., Mathieu, E., Lauby, A., Frick, J., Demarquay, C., Gourmelon, P., Gorin, N.C., Thierry, D. (2004) Feasibility and limits of bone marrow mononuclear cell expansion following irradiation, Int. J. Radiat. Biol. 80, 73-81. CrossRef
Bertho, J.M., Prat, M., Frick, J., Demarquay, C., Gaugler, M.H., Dudoignon, N., Clairand, I., Chapel, A., Gorin, N.C., Thierry, D., Gourmelon, P. (2005a) Application of autologous hematopoietic cell therapy to a non human primate model of heterogeneous high dose irradiation, Radiat. Res. 163, 557-570. CrossRef
Bertho, J.M., Frick, J., Prat, M., Demarquay, C., Dudoignon, N., Trompier, F., Gorin, N.C., Thierry, D., Gourmelon, P. (2005b) Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non human primate model, Int. J. Radiat. Oncol. Biol. Phys. 63, 911-920. CrossRef
Cristy, M. (1981) Active bone marrow distribution as a function of age in humans, Phys. Med. Biol. 26, 389-400. CrossRef
Dainiak N. (2005) The evolving role of haematopoietic cell transplantation in radiation injury: potential and limitations, Br. J. Haematol. 27(sup), 169-174.
Densow D., Kindler H., Baranov A.E., Tibken B., Hofer E.P., Fliedner T.M. (1997) Criteria for the selection of radiation accident victims for stem cell transplantation, Stem Cells 15(sup2), 287-297.
Dolphin G.W. (1969) Biological dosimetry with particular reference to chromosome aberration analysis, A review of methods, Handling of radiation accidents, pp. 215-224. AIEA, Vienne.
Drouet, M., Mathieu, J., Grenier, N., Multon, E., Sotto, J.J., Herodin, F. (1999) The reduction of in vitro radiation-induced fas-related apoptosis in CD34+ progenitor cells by SCF, Flt-3 ligand, TPO, and IL-3 in combination resulted in CD34+ cell proliferation and differentiation, Stem Cells 17, 273-285. CrossRef
Dublineau, I., Dudoignon, N., Monti, P., Combes, O., Wysocki, J., Grison, S., Baudelin, C., Griffiths, N.M., Scanff, P. (2004) Screening of a large panel of gastrointestinal peptide plasma levels is not adaptated for the evaluation of digestive damage following irradiation, Can. J. Physiol. Pharmacol. 82, 103-113. CrossRef
Fliedner T.M., Friesecke I., Beyrer K. (Eds) (2001) The medical management of radiation accidents, manual on the acute radiation syndrome. British Institute of Radiology, London.
Hérodin, F., Drouet, M. (2002) Autologous cell therapy as a new approach to treatment of radiation-induced bone marrow aplasia: preliminary study in a baboon model, Can. J. Physiol. Pharmacol. 80, 710-716. CrossRef
Hoffman, R. (1999) Progress in the development of systems for in vitro expansion of human hematopoietic stem cells, Curr. Opin. Hematol. 6, 184-191. CrossRef
Jaroscak, J., Goltry, K., Smith, A., Waters-Pick, B., Martin, P.L., Driscoll, T.A., Howrey, R., Chao, N., Douville, J., Burhop, S., Fu, P., Kurtzberg, J. (2003) Augmentation of umbilical cord blood transplantation with ex vivo-expanded umbilical cord blood cells: Results of a phase I trial using the AastromReplicell system, Blood 101, 5061-5067. CrossRefPubMed
Jouet J.P., Gorin N.C., Gourmelon P. (2003) Gestion médicale des victimes d’irradiation lors d’un accident nucléaire ou d’un acte de malveillance de grande ampleur, Les entretiens de Bichat, tables rondes thérapeutique, pp. 144-147. Expansion scientifique française, Paris.
Kanda, R., Minamihisamatsu, M., Hayata, I. (2002) Dynamic analysis of chromosome aberrations in three victims of the Tokai-Mura criticality accident, Int. J. Radiat. Biol. 78, 857-862. CrossRef
Konchalovsky M.V., Barabov A.E., Kolganov A.V. (2005) Multiple organ involvement and failure: Selected Russian radiation accident cases re-visited, Br. J. Radiol. 27(sup), 26-29.
Lutgens, L.C., Deutz, N., Granzier-Peeters, M., Beets-Tan, R., De Ruysscher, D., Gueulette, J., Cleutjens, J., Berger, M., Wouters, B., von Meyenfeldt, M., Lambin, P. (2004) Plasma citrulline concentration: A surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients, Int. J. Radiat. Oncol. Biol. Phys. 60, 275-285. CrossRef
Mac Vittie T.J., Farese A.M. (1995) Experimental approaches for therapeutic treatment of radiation-induced haemopoietic injury, Radiation toxicology, bone marrow and leukemia (J.H. Hendry et B.I. Lord, Eds), pp. 141-193. Taylor & Francis, Londres.
Moulder, J.E. (2004) Post-irradiation approaches to the treatment of radiation injuries in the context of radiological terrorism and radiation accidents: a review, Int. J. Radiat. Biol. 80, 3-10. CrossRef
Nagayama, H., Misawa, K., Tanaka, H., Ooi, J., Iseki, T., Tojo, A., Tani, K., Yamada, Y., Kodo, H., Takahashi, T.A., Yamashita, N., Shimazaki, S., Asano, S. (2002) Transient haematopoietic stem cell rescue using umbilical cord blood for a lethally irradiated nuclear accident victim, Bone Marrow Transpl. 29, 197-204. CrossRef
Paquette, R.L., Dergham, S.T., Karpf, E., Wang, H.J., Slamon, D.J., Souza, L., Glaspy, J.A. (2000) Ex vivo expanded unselected peripheral blood: Progenitor cells reduce posttransplantation neutropenia, thrombocytopenia, and anemia in patients with breast cancer, Blood 96, 2385-2390. PubMed
Parmentier N.C., Nénot J.C., Jammet H.J. (1980) A dosimetric study of the Belgian (1965) and Italian (1975) accidents, The medical basis for radiation accident preparedness (K.F. Hübner, S.A. Fry, Eds) pp. 105-112. Elsevier, Amsterdam.
Pouget, J.P., Laurent, C., Delbos, M., Benderitter, M., Clairand, I., Trompier, F., Stephanazzi, J., Carsin, H., Lambert, F., Voisin, P., Gourmelon, P. (2004) PCC-FISH in skin fibroblasts for local dose assessment: biodosimetric analysis of a victim of the Georgian radiological accident, Radiat. Res. 162, 365-376. CrossRef
Prat, M., Demarquay, C., Frick, J., Thierry, D., Gorin, N.C., Bertho, J.M. (2005) Radiation induced increase in plasma Flt3-ligand concentration in mice: evidence for the implication of several cell types, Radiat. Res. 163, 408-417. CrossRef
Prat, M., Frick, J., Laporte, J.-Ph., Thierry, D., Gorin, N.C., Bertho, J.M. (2006) Kinetics of plasma Flt3 ligand concentration in haematopoietic stem cell transplanted patients, Leuk. Lymph. 47, 77-80. CrossRef
Ringden, O.T.H., Le Blanc, K., Remberger, M. (2005) Granulocyte and granulocyte-macrophage colony-stimulating factors in allografts: Uses, misuses, misconceptions and future applications, Exp. Hematol. 33, 505-512. CrossRef
Roy L., Bertho J.M., Souidi M., Vozenin M.C., Voisin Ph., Benderitter M. (2005) Biochemical approach to prediction of multiple organ dynsfunction syndrome, Br. J. Haematol. 27(sup), 146-151.
Sasaki, M.S., Miyata, H. (1968) Biological dosimetry in atomic bomb survivors, Nature 220, 1189-1193. CrossRef
Silini G., Gouskova A. (1991) Biological dosimetry at Chernobyl, New horizons in biological dosimetry, (B.L. Gledhill, F. Mauro, Eds) pp. 129-144. Wiley-Liss, New York.