Une véritable révolution technologique a, au cours des 5 dernières années, profondément modifié le périmètre d’application et les perspectives de la médecine nucléaire, en particulier de la cancérologie nucléaire. Dans le cadre des applications diagnostiques, la tomographie par émission de positons (TEP) avec le 18F-fluoro déoxyglucose (FDG) a eu un impact déterminant sur la stratégie diagnostique des oncologues en ajoutant des informations fonctionnelles très précieuses aux informations morphologiques de l’imagerie conventionnelle. De nombreux autres traceurs fluorés, en cours d’évaluation clinique, sont destinés à étudier des fonctions tumorales diverses (prolifération tumorale, hypoxie, apoptose chimioinduite, etc.) pouvant avoir des répercussions thérapeutiques importantes. D’autres émetteurs de positons seront disponibles à terme, comme le 64Cu (période de 12 heures), le 124I (période de 4,1 jours) et le 86Y (période de 15 heures) dans des indications comme l’immuno-TEP ou la dosimétrie pré-thérapeutique qui ne peuvent être développées avec le 18F du fait de sa période trop courte. Dans le cadre des applications thérapeutiques, la radiothérapie interne, longtemps limitée au cancer thyroïdien différencié, s’est étendue à beaucoup d’autres types de cancers du fait de la disponibilité de nouveaux vecteurs de radionucléides comme les anticorps monoclonaux (radioimmunothérapie) ou des peptides (radiopeptide-thérapie), de nouvelles méthodes de ciblage tumoral et de nouveaux radionucléides, en particulier des émetteurs de particules alpha (alpha-thérapie). Toutes ces évolutions technologiques ont bien sûr une implication en radioprotection en ce qui concerne l’exposition du personnel de médecine nucléaire, de l’entourage familial proche et plus généralement de l’environnement. Actuellement l’essentiel des dispositions règlementaires s’applique au 99mTc pour les applications diagnostiques et au 131I en thérapie, elles ont été étendues en 2001 au 18F dans le cadre des contraintes de radioprotection liées à l’utilisation de FDG. Concernant l’exposition de l’entourage proche du malade, la règlementation est actuellement limitée au seuil d’activité de 740 MBq de 131I qui impose un confinement hospitalier du malade. Une indication indirecte de cette exposition peut être donnée par le débit d’exposition (en µSv/h) à 1 mètre pour une source de 1 MBq. Si on prend en compte la valeur du débit et la période physique, il apparaît, qu’à activité identique, le 52Fe, le 86Y et le 124I sont des radionucléides émetteurs de positons qui présentent un débit élevé à la sortie du service et pendant les heures qui suivent l’injection. Concernant l’exposition de l’environnement, la règlementation actuelle impose une concentration radioactive, à l’émissaire de l’établissement, de 1000 Bq/L pour le 99mTc et de 100 Bq/L pour le 131I. Pour les nouveaux radionucléides, d’autres hypothèses que celle d’une concentration permanente de 100 Bq/L doivent être retenues et des études d’impact, similaires à celles pratiquées dans le domaine du nucléaire devraient être effectuées.