Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:48:03.908Z Has data issue: false hasContentIssue false

Dynamics near a symmetric Hopf bifurcation

Published online by Cambridge University Press:  14 November 2011

Wayne Nagata
Affiliation:
Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada, NIG 2W1

Synopsis

We consider the effects of a small symmetry breaking perturbation on a system of differential equations near a Hopf bifurcation point, where the unperturbed system has O(2) symmetry. We show that there exist secondary bifurcations of invariant two-tori of solutions and that the flow on the tori can be quasiperiodic or weakly resonant (phase locked), depending on the size of the perturbation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arnold, V. I.. Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren 250 (New York: Springer, 1983).CrossRefGoogle Scholar
2Chow, S.-N. and Hale, J. K.. Methods of Bifurcation Theory, Grundlehren 251 (New York: Springer, 1982).CrossRefGoogle Scholar
3Elphick, C., Tirapegui, E., Brachet, M. E., Coullet, P. and Iooss, G.. A simple global characterization for normal forms of singular vector fields (preprint, Université de Nice, 1986).Google Scholar
4van Gils, S. A. and Mallet-Paret, J.. Hopf bifurcation and symmetry: travelling and standing waves on the circle. Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 279307.CrossRefGoogle Scholar
5Golubitsky, M. and Guckenheimer, J. M. (eds.). Multiparameter Bifurcation Theory. Contemporary Mathematics 56 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
6Golubitsky, M. and Stewart, I.. Hopf bifurcation in the presence of symmetry. Arch. Rational Mech. Anal. 87 (1985), 107165.CrossRefGoogle Scholar
7Golubitsky, M. and Stewart, I.. Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In Multiparameter Bifurcation Theory, eds. Golubitsky, M. and Guckenheimer, J. M., pp. 131173 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
8Hale, J. K.. Ordinary Differential Equations (Malabar: Krieger, 1980).Google Scholar
9Herman, M. R.. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. I.H.E.S. 49 (1979), 5233.CrossRefGoogle Scholar
10Herman, M. R.. Mesure de Lebesgue et nombre de rotation. In Geometry and Topology, Lecture Notes in Mathematics 579, eds. Palis, J. and do Carmo, M., pp. 271293 (Berlin: Springer, 1977).Google Scholar
11Iooss, G.. Bifurcation of Maps and Applications, Mathematics Studies 36 (Amsterdam: North-Holland, 1979).Google Scholar
12Nagata, W.. Symmetric Hopf bifurcations and magnetoconvection. In Multiparameter Bifurcation Theory, eds. Golubitsky, M. and Guckenheimer, J. M., pp. 237265 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
13Scheurle, J.. Asymptotic properties of Arnold tongues. In Oscillation, Bifurcation and Chaos, Canadian Mathematical Society Conference Proceedings, 8, eds. Atkinson, F. V., Langford, W. F. and Mingarelli, A. B., pp. 655663 (Providence, R.I.: American Mathematical Society, 1987).Google Scholar
14Takens, F.. Forced oscillations and bifurcations. Comm. Math. Inst. Rijksuniv. Utrecht 3 (1974), 159.Google Scholar