On August 17, 2017, the LIGO/VIRGO collaboration detected the first gravitational wave signal coming from the merger of two neutron stars. This groundbreaking discovery, referred to as GW170817, revealed to us how heavy elements, such as gold and platinum, are synthesized through a mechanism known as rapid neutron capture (r-process). In order to fully understand these signals, we need to simulate the resulting accretion disk around a black hole, and its outflows. This task requires efficient computing codes that include general relativity magnetohydrodynamics (GRMHD), neutrino physics, and a model for matter at high densities. We present the implementation of a tabulated equation of state that takes care of matter at high densities and a neutrino leakage scheme that considers the impact of neutrinos into HARM3D, a GRMHD parallelized code. We also apply the tools to a magnetized torus.