Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T04:40:42.800Z Has data issue: false hasContentIssue false

The Off-Axis Afterglow of GW170817: Flux Prediction at Very High Energies

Published online by Cambridge University Press:  27 February 2023

Clément Pellouin
Affiliation:
Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris (IAP), 98 bis boulevard Arago, 75014 Paris, France email: [email protected]
Frédéric Daigne
Affiliation:
Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris (IAP), 98 bis boulevard Arago, 75014 Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The binary neutron star merger gravitational-wave event GW170817 and observations of the subsequent electromagnetic signals at different wavelengths have helped better understand the outflows that follow these mergers. In particular, the off-axis afterglow of the jetted ejecta has allowed to probe the lateral structure of such jets, especially thanks to VLBI imagery of the source. In this work, we model this afterglow including a decelerating jet with lateral structure, while synchrotron emission and synchrotron self-Compton scatterings power the jet radiation. In particular, we extend our analysis to very high energies and predict the light curve in the energy range of H.E.S.S. and the CTA. We finally discuss how future detections of afterglows by these observatories can help break the degeneracies in some key physical parameter measurements, and allow to probe efficiently a sub-population of fast-merging binaries.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, PhRvL, 119, 161101 Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, ApJL, 848, L12 CrossRefGoogle Scholar
Cherenkov Telescope Array Consortium 2019, Science with the Cherenkov Telescope Array., Published by World Scientific Publishing Co. Pte. Ltd., ISBN no.9789813270091 Google Scholar
Dominik, M., Belczynski, K., Fryer, C., et al. 2012 ApJ 759, 52 CrossRefGoogle Scholar
Duque, R., Daigne, F. & Mochkovitch, R. 2019, A& A, 631, A39 Google Scholar
Duque, R., Beniamini, P., Daigne, F., et al. 2020, A& A, 639, A15 Google Scholar
Ghirlanda, G., Salafia, O. S., Paragi, Z., et al. 2019, Science, 363, 6430, 968971 CrossRefGoogle Scholar
Gill, R. & Granot, J. 2018, MNRAS, 478, 41284141 CrossRefGoogle Scholar
Goldstein, A., Veres, P., Burns, E., et al. 2017, ApJL, 848, L14 CrossRefGoogle Scholar
Hajela, A., Margutti, R., Alexander, K. D., et al. 2019, ApJL, 886, L17 CrossRefGoogle Scholar
H. E. S. S. Collaboration 2020, ApJL, 894, L16 CrossRefGoogle Scholar
Kalogera, V. 1996, ApJ, 471, 352 CrossRefGoogle Scholar
Mooley, K. P., Deller, A. T., Gottlieb, O., et al. 2018, Nature, 561, 7723, 355359 CrossRefGoogle Scholar
Nakar, E., Ando, S. & Sari, R. 2009, ApJ, 703, 675691 CrossRefGoogle Scholar
Savchenko, V., Ferrigno, C., Kuulkers, E., et al. 2017, ApJL, 848, L15 CrossRefGoogle Scholar
Tanvir, N. R., Levan, A. J., González-Fernández, C., et al. 2017, ApJL, 848, L27 CrossRefGoogle Scholar
Troja, E., van Eerten, H., Zhang, B., et al. 2020, MNRAS, 498, 56435651 CrossRefGoogle Scholar
Villar, V. A., Guillochon, J., Berger, E., et al. 2017, ApJL, 851, L21 CrossRefGoogle Scholar