Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T23:54:19.079Z Has data issue: false hasContentIssue false

HARM3D+NUC: GRMHD, nuclear tables and neutrino leakage

Published online by Cambridge University Press:  27 February 2023

Ariadna Murguia-Berthier
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), 1800 Sherman Ave., Evanston, IL 60201, USA email: [email protected]
Scott C. Noble
Affiliation:
Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Luke F. Roberts
Affiliation:
CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA NSCL, Michigan State University, East Lansing, MI 48824, USA
Enrico Ramirez-Ruiz
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On August 17, 2017, the LIGO/VIRGO collaboration detected the first gravitational wave signal coming from the merger of two neutron stars. This groundbreaking discovery, referred to as GW170817, revealed to us how heavy elements, such as gold and platinum, are synthesized through a mechanism known as rapid neutron capture (r-process). In order to fully understand these signals, we need to simulate the resulting accretion disk around a black hole, and its outflows. This task requires efficient computing codes that include general relativity magnetohydrodynamics (GRMHD), neutrino physics, and a model for matter at high densities. We present the implementation of a tabulated equation of state that takes care of matter at high densities and a neutrino leakage scheme that considers the impact of neutrinos into HARM3D, a GRMHD parallelized code. We also apply the tools to a magnetized torus.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C. et al. 2017a, PhR, 119, 161101 Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C. et al. 2017b, ApJL, 848, L12 CrossRefGoogle Scholar
Baiotti, L., Giacomazzo, B., & Rezzolla, L. 2008, PhR, 78, 084033 Google Scholar
Balbus, S. A., & Hawley, J. F. 2008, Reviews of Modern Physics, 765 70, 1 Google Scholar
Cipolletta, F., Kalinani, J. V., Giacomazzo, B., & Ciolfi, R. 2020, Classical and Quantum Gravity, 37, 135010 CrossRefGoogle Scholar
Coulter, D. A., Foley, R. J., Kilpatrick, C. D., et al. 2017, Science, 781, 358, 1556 CrossRefGoogle Scholar
Etienne, Z. B., Paschalidis, V., Haas, R., Mösta, P. & Shapiro, S. L. 2015, Classical and Quantum Gravity, 32, 175009 CrossRefGoogle Scholar
Fishbone, L. G., & Moncrief, V. 1976, ApJ, 207, 962 CrossRefGoogle Scholar
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ, 589, 444 CrossRefGoogle Scholar
Gourgoulhon, E., Grandclément, P., Marck, J.-A., Novak, J., & Taniguchi, K. 2016, http://ascl.net/1608.018 Google Scholar
Lee, W. H., Ramirez-Ruiz, E., & López-Cámara, D. 2009, ApJL, 869 699, L93 CrossRefGoogle Scholar
Lippuner, J., & Roberts, L. F. 2015, ApJ, 815, 82 CrossRefGoogle Scholar
Lippuner, J., & Roberts, L. F. 2017, ApJS, 18Google Scholar
Lopez Armengol, F. G., Etienne, Z. B., Noble, S. C., et al. 2021, arXiv:2112.09817Google Scholar
Miller, J. M., Ryan, B. R., & Dolence, J. C. 2019, ApJS, 241, 30 CrossRefGoogle Scholar
Murguia-Berthier, A., Ramirez-Ruiz, E., Kilpatrick, C. D., Foley, R. J. et al. 2017, ApJL, 848, L34 CrossRefGoogle Scholar
Murguia-Berthier, A., Ramirez-Ruiz, E., De Colle, F., Janiuk, A., Rosswog, S., Lee, W. H. 2021a, ApJ, 908, 152 CrossRefGoogle Scholar
Murguia-Berthier, A., Noble, S.C., Roberts, L.F., Ramirez-Ruiz, E. et al. 2021b, ApJ, 919, 95 CrossRefGoogle Scholar
Nakar, E. 2019, PhR, 442, 166 Google Scholar
Narayan, R., Piran, T., & Kumar, P. 2001, ApJ, 557, 949 CrossRefGoogle Scholar
Noble, S. C., Gammie, C. F., McKinney, J. C., & Zanna, Del 2006, ApJ, 641, 626 CrossRefGoogle Scholar
Ruffert, M., Janka, H. T., & Schaefer, G. 1996, A&A, 311, 532 Google Scholar
Siegel, D. M., & Metzger, B. D. 2018, ApJ, 858, 52 CrossRefGoogle Scholar
Siegel, D. M., Mösta, P., Desai, D., & Wu, S. 2018, ApJ, 859, 71 CrossRefGoogle Scholar