Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T23:46:54.539Z Has data issue: false hasContentIssue false

The neutron star neutron star merger GW170817: a multi–messenger study

Published online by Cambridge University Press:  27 February 2023

Giulia Gianfagna
Affiliation:
INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Rome, Italy email: [email protected]
Luigi Piro
Affiliation:
INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Rome, Italy email: [email protected]
Eleonora Troja
Affiliation:
Dipartimento di Fisica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Hendrik van Eerten
Affiliation:
Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK
Geoffrey Ryan
Affiliation:
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada
Fulvio Ricci
Affiliation:
INFN, Sezione di Roma, I-00185 Roma, Italy Università di Roma “La Sapienza”, I-00185 Roma, Italy
Francesco Pannarale
Affiliation:
INFN, Sezione di Roma, I-00185 Roma, Italy Università di Roma “La Sapienza”, I-00185 Roma, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We join gravitational-wave and electromagnetic data to implement a combined simultaneous fit of the GW170817 event. The LIGO-Virgo analysis includes the estimation of the inclination, the angle of the binary with respect to the gravitationa-wave detector network line of sight. From the observations of the afterglow, instead, we can recover the viewing angle. The inclination and the viewing angle are supplementary angles, and can be treated as a single parameter. The value of the inclination that we recover from the fit is in agreement with the LIGO-Virgo previous works, with an uncertainty that is 10-fold smaller, thanks to contribution of the electromagnetic data. Moreover, with the inclusion of the gravitational-wave data, the degeneracy between the viewing angle and the jet opening angle is broken. This procedure is useful not only for analyzing GW170817, but any gravitational-wave event with an electromagnetic counterpart.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Coulter, D. A., 2017, Science, 358, 6370, 15561558 CrossRefGoogle Scholar
Dietrich, T., Phys. Rev. D, 96, 121501, 12 Google Scholar
Eichler, D., 1989, Nature, 340, 126128 CrossRefGoogle Scholar
Finn, L. S. and Chernoff, D. F., 1993, Phys. Rev. D, 47, 21982219, 6Google Scholar
Goldstein, A., 2017, ApJ, 848, L14, 2CrossRefGoogle Scholar
Hallinan, G. et al, 2017, Science, 358, 1579–158, 6370CrossRefGoogle Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017a, Phys. Rev. Lett., 119, 161101 CrossRefGoogle Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017b, ApJ, 848, L13Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017c, Phys. Rev. Lett., 119, 161101 CrossRefGoogle Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017d, ApJ, 848, L12Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2019, Phys. Rev. X, 9, 011001Google Scholar
Makhathini, S., 2021, ApJ, 922, 154, 2 CrossRefGoogle Scholar
Mooley, K. P., 2018, Nature, 561, 355359 CrossRefGoogle Scholar
Rhoads, J. E., 1997, ApJ, 487, L1L4 CrossRefGoogle Scholar
Romero-Shaw, I. M., 2020, MNRAS, 499, 32953319, 3CrossRefGoogle Scholar
Ryan, G., 2020, ApJ, 896, 166, 2 CrossRefGoogle Scholar
Savchenko, V., 2017, ApJl, 848, L15, 2CrossRefGoogle Scholar
Smith, R., 2020, MNRAS, 498, 44924502, 3CrossRefGoogle Scholar
Speagle, J. S., 2020, MNRAS, 493, 31323158, 3CrossRefGoogle Scholar
Troja, E., 2017, Nature, 551, 7174, 7678CrossRefGoogle Scholar
Troja, E., 2018, MNRAS, 478, L18L23, 1CrossRefGoogle Scholar
Troja, E., 2020, MNRAS, 498, 56435651, 4CrossRefGoogle Scholar
Troja, E., 2021, MNRAS, 510, 56435651, 2CrossRefGoogle Scholar
Van Eerten, H., 2010, ApJ, 722, 235247, 1CrossRefGoogle Scholar
Wade, L., 2014, Phys. Rev. D, 89, 103012, 10 CrossRefGoogle Scholar