Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T15:53:44.609Z Has data issue: false hasContentIssue false

XRPD patterns of opals: A brief review and new results from recent studies

Published online by Cambridge University Press:  29 February 2012

C. Ghisoli
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, via Ferrata, 1-27100 Pavia, Italy
F. Caucia*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, via Ferrata, 1-27100 Pavia, Italy
L. Marinoni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pavia, via Ferrata, 1-27100 Pavia, Italy
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A new classification of opals through X-ray powder diffraction (XRPD) methodology, by analysing 75 new samples of opal came from different worldwide areas, is introduced. A brief historical summary of the application of XRPD analysis on opals and the most important XRPD results reported in literature were compared with the newly obtained XRPD data. A simple method for the classification of opals on the basis of their degrees of structural order-disorder calculated from the diffraction data is proposed. In addition, a clear boundary, which has not been previously described by others in literature, related to the presence (or absence) of two-peak characteristic of the cristobalite phase is identified. This boundary allows for a discrimination of opals C from CT.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baier, E. (1932). “Die optik der edelopale,” Z. Kristallogr. ZEKRDZ 81, 183218.CrossRefGoogle Scholar
Banergee, A. and Wenzel, T. (1999). “Black opal from Honduras,” Eur. J. Mineral. EJMIER 11, 401408.CrossRefGoogle Scholar
Bareille, G., Labracherie, M., Maillet, N., and Latouche, C. (1990). “Quantification des teneurs en opale biogene des sediments de l’Ocean Austral par diffractometrie X,” Clay Miner. CLMIAF 25, 363373.10.1180/claymin.1990.025.3.11CrossRefGoogle Scholar
Bermanec, V., Tomašić, N., Karfunkel, J., Scholz, R., Kniewald, G., and Jaksch, H. (2004). Applied Mineralogy, edited by Pecchio, M., Dias de Andrade, F. R., D’Agostino, L. Z., Kahn, H., Sant’Agostino, L. M., and Lé Tassinari, M. M. M. (ICAM-BR, São Paulo), pp. 525527.Google Scholar
Brajkovic, A., Rolandi, V., Vignola, P., and Grizzetti, R. (2007). “Blue and pink opals from Acari, Peru. Their optical, structural and spectroscopic features,” The Aust. Gemmol. 23, 315.Google Scholar
Bustillo, M. A., García, R., and García Pérez, M. V. (1999). “Estados estructurales del opalo CT enrocas opalinas sedimentarias e hidrotermales,” Bol. Soc. Española Mineral. 22-A, 2122.Google Scholar
Cady, S. L., Wenk, H. R., and Downing, K. H. (1996). “HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California,” Am. Mineral. AMMIAY 81, 13801395.CrossRefGoogle Scholar
Chisholm, J. E. (1992). “Powder-diffraction patterns and structurals models for palygorskite,” Can. Mineral. CAMIA6 30, 6173.Google Scholar
Cirilli, V. and Giannone, A. (1941). “Sulla presenza di β-e α-cristobalite in alcuni campioni di opale,” Rend. Accad. Sci. Fis. Mat., Naples 11, 99104.Google Scholar
De Jong, B. H. W. S., Van Hoek, J., Veeman, W. S., and Manson, D. V. (1987). “X-ray diffraction and 29Si magic-angle-spinning nmr of opals: Incoherent long- and short-range order in opal-CT,” Am. Mineral. AMMIAY 72, 11951203.Google Scholar
Dódony, I. and Takàcs, J. (1980). “Structures of precious opal from Červenica,” Ann. Univ. Sci. Budap. Rolando Eotvos Nominatae, Sect. Geol. 22, 3750.Google Scholar
Dwyer, F. P. and Mellor, D. P. (1932). “A note on the occurrence of β-cristobalite in Australian opals,” J. Proc. R. Soc. N. S. W. JPRSA5 66, 378382.Google Scholar
Dwyer, F. P. and Mellor, D. P. (1934). “An X-ray study of opals,” J. Proc. R. Soc. N. S. W. JPRSA5 68, 4750.Google Scholar
Elzea, J. M., Odom, I. E., and Miles, W. J. (1994). “Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by x-ray diffraction,” Anal. Chim. Acta ACACAM 286, 107116.10.1016/0003-2670(94)80182-7CrossRefGoogle Scholar
Elzea, J. M. and Rice, S. B. (1996). “TEM and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal,” Clays Clay Miner. CLCMAB 44, 492500.10.1346/CCMN.1996.0440407CrossRefGoogle Scholar
Esenli, F., Kumbasar, I., Eren, R. E., and Uz, B. (2001). “Characteristics of opals from Simav, Turkey,” Neues Jahrb. Mineral., Monatsh. NJMMAW 2001, 97113.Google Scholar
Esenli, F., Kumbasar, I., Esenli, V., and Kırıkoğlu, S. (2003). “A study on the characteristics of some opals from Turkey,” Neues Jahrb. Mineral., Monatsh. NJMMAW 2003, 177192.10.1127/0028-3649/2003/2003-0177CrossRefGoogle Scholar
Fenoglio, M. and Sanero, E. (1943). “Sulla presenza e diffusione della cristobalite β negli opali dei giacimenti di magnesite delle Prealpi Piemontesi,” Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat. AATFAA 78, 265273.Google Scholar
Flörke, O. W. (1955). “Zur frage des “hoch-cristobalit” in opalen bentoniten und gläsern,” Neues Jahrb. Mineral., Monatsh. NJMMAW 1955, 217224.Google Scholar
Flörke, O. W. (1967). “Die modificationen von SiO2,” Fortschr. Mineral. FMRLAL 44, 181230.Google Scholar
Flörke, O. W., Graetsch, H., Martin, B., Röller, K., and Wirth, R. (1991). “Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure,” Neues Jahrb. Mineral., Abh. NJMIAK 163, 1942.Google Scholar
Fritsch, E., Gaillou, E., Ostroumov, M., Rondeau, B., Devouard, B., and Barreau, A. (2004). “Relationship between nanostructure and optical absorption in fibrous pink opals from Mexico and Peru,” Eur. J. Mineral. EJMIER 16, 743751.10.1127/0935-1221/2004/0016-0743CrossRefGoogle Scholar
Frondel, C. (1962). The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837–1892, 7th ed. (Wiley, New York), Vol. III.Google Scholar
Garavelli, C. L. (1964). “Ordine e disordine negli opali,” Atti Soc. Toscana Sci. Nat. Pisa Mem., Ser. A 71, 133186.Google Scholar
Ghisoli, C. (2008). “Opals: Characterization nomenclature definition and proposal of a new varieties classification following the discovery of new materials in Peru,” Sci. Acta 2, 2734.Google Scholar
Giuseppetti, G. and Veniale, F. (1969). “Relazioni tra natura dell’acqua, morfologia e struttura degli opali: Nota II,” Rend. Soc. Ital. Mineral. Petrol. 25, 407437.Google Scholar
Graetsch, H. (1994). “Structural characteristics of opaline and microcrystalline silica minerals,” Rev. Mineral. RMINDF 29, 209232.Google Scholar
Graetsch, H. and Flörke, O. W. (1991). “X-ray powder diffraction patterns and phase relationships of tridymite modifications,” Z. Kristallogr. ZEKRDZ 195, 3148.CrossRefGoogle Scholar
Graetsch, H., Gies, H., and Topalovic, I. (1994). “NMR, XRD and IR study on microcrystalline opals,” Phys. Chem. Miner. PCMIDU 21, 166175.10.1007/BF00203147CrossRefGoogle Scholar
Greig, J. W. (1932). “The existence of the high-temperature form of cristobalite at room temperature and the crystallinity of opal,” J. Am. Chem. Soc. JACSAT 54, 28462849.10.1021/ja01346a501CrossRefGoogle Scholar
Guthrie, G. D. Jr., Bish, D. C., and Reynolds, R. C. Jr. (1995). “Modeling the X-ray diffraction pattern of opal-CT,” Am. Mineral. AMMIAY 80, 869872.CrossRefGoogle Scholar
Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., and Campbell, K. A. (2000a). “Mineralogical and textural changes accompanying ageing of silica sinter,” Miner. Deposita 35, 4862.10.1007/s001260050005CrossRefGoogle Scholar
Herdianita, N. R., Rodgers, K. A., and Browne, P. R. L. (2000b). “Routine instrumental procedures to characterise the mineralogy of modern and ancient silica sinters,” Geothermics GTMCAT 29, 6581.10.1016/S0375-6505(99)00054-1CrossRefGoogle Scholar
Isphording, W. C. (1973). “Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits,” Clays Clay Miner. CLCMAB 21, 391401.10.1346/CCMN.1973.0210515CrossRefGoogle Scholar
Jones, J. B., Sanders, J. V., and Segnit, E. R. (1964). “Structure of opal,” Nature (London) NATUAS 204, 990991.10.1038/204990a0CrossRefGoogle Scholar
Jones, J. B. and Segnit, E. R. (1971). “The nature of opal: I. Nomenclature and constituent phases,” J. Geol. Soc. Aust. 18, 5768.CrossRefGoogle Scholar
Jones, J. B., Segnit, E. R., and Nickson, N. M. (1963). “Differential thermal and X-ray analysis of opal,” Nature (London) NATUAS 198, 1191.10.1038/1981191a0CrossRefGoogle Scholar
Juchem, P. L., Lubachesky, R., De Brum, T. M. M., and Waichel, B. L. (2004). in Applied Mineralogy, edited by Pecchio, M., Dias de Andrade, F. R., D’Agostino, L. Z., Kahn, H., Sant’Agostino, L. M., and Lé Tassinari, M. M. M. (ICAM-BR, São Paulo), pp. 559562.Google Scholar
Kano, K. (1983). “Ordering of opal-CT in diagenesis,” Geochem. J. GEJOBE 17, 8793.CrossRefGoogle Scholar
Kastner, M., Keene, J. B., and Gieskes, J. M. (1977). “Diagenesis of siliceous oozes: I. Chemical controls on the rate of opal-A to opal-CT transformations: An experimental study,” Geochim. Cosmochim. Acta GCACAK 41, 10411059.10.1016/0016-7037(77)90099-0CrossRefGoogle Scholar
Kerr, P. F. (1924). “The determination of opaque ore minerals by X-ray diffraction patterns,” Econ. Geol. ECGLAL 19, 134.10.2113/gsecongeo.19.1.1CrossRefGoogle Scholar
Langer, K. and Flörke, O. W. (1974). “Near infrared absorption spectra (4000-9000 cm-1) of opals and the role of “water” in these SiO2·nH2O minerals,” Fortschr. Mineral. FMRLAL 52, 1751.Google Scholar
Laves, F. (1939). “Uber den einfluss von spannungen auf die regelung von quartz- und cristobalit in chalzedon, quartzin, und lussatit,” Naturwiss. NATWAY 27, 705707.10.1007/BF01494424CrossRefGoogle Scholar
Levin, I. and Ott, E. (1932). “The crystallinity of opals and the existence of high-temperature cristobalite at room temperature,” J. Am. Chem. Soc. JACSAT 54, 828829.10.1021/ja01341a513CrossRefGoogle Scholar
Levin, I. and Ott, E. (1933). “X-ray study of opals, silica glass and silica gel,” Z. Kristallogr. ZEKRDZ 85, 305318.CrossRefGoogle Scholar
Lynne, B. Y. and Campbell, K. A. (2004). “Morphologic and mineralogic transitions from opal-A to opal-CT in low-temperature siliceous sinter diagenesis, Taupo volcanic zone, New Zealand,” J. Sediment Res. JSRAEA 74, 561579.10.1306/011704740561CrossRefGoogle Scholar
Mitchell, R. S. and Tufts, S. (1973). “Wood opal; a tridymite-like mineral,” Am. Mineral. AMMIAY 58, 717720.Google Scholar
Mizutani, S. (1977). “Progressive ordering of cristobalitic silica in the early stage of diagenesis,” Contrib. Mineral. Petrol. CMPEAP 61, 129140.10.1007/BF00374363CrossRefGoogle Scholar
Morse, J. W. and Casey, W. H. (1988). “Ostwald processes and mineral paragenesis in sediments,” Am. Sci. AMSCAC 288, 537560.Google Scholar
Murata, K. I. and Nakata, K. (1974). “Cristobalitic stage in the diagenesis of diatomaceous shale,” Science SCIEAS 184, 567568.10.1126/science.184.4136.567CrossRefGoogle ScholarPubMed
Raman, C. V. and Jayaraman, A. (1953). “The structure of opal and the origin of its iridescence,” Proc. Natl. Inst. Sci. India 38, 101108.Google Scholar
Rinne, F. (1924). “III. Röntgenographische untersuchungen an einigen feinzerteilten mineralien, kunstprodukten und dichten gesteinen,” Z. Kristallogr. ZEKRDZ 60, 5569.CrossRefGoogle Scholar
Rondeau, B., Fritsch, E., Guiraud, M., and Renac, C. (2004). “Opals from Slovakia (“Hungarian” opals): A re-assessment of the conditions of formation,” Eur. J. Mineral. EJMIER 16, 789799.10.1127/0935-1221/2004/0016-0789CrossRefGoogle Scholar
Sanders, J. V. (1975). “Microstructure and crystallinity of gem opals,” Am. Mineral. AMMIAY 60, 749757.Google Scholar
Simonton, T. C., Rustum, R., Komarneni, S., and Breval, E. (1986). “Microstructure and mechanical properties of synthetic opal: A chemically bonded ceramic,” J. Mater. Res. JMREEE 1, 667674.10.1557/JMR.1986.0667CrossRefGoogle Scholar
Smith, D. K. (1997). “Evaluation of the detectability and quantification of respirable crystalline silica by X-ray powder diffraction methods,” Powder Diffr. PODIE2 12, 200227.CrossRefGoogle Scholar
Smith, D. K. (1998). “Opal, cristobalite and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography,” Powder Diffr. PODIE2 13, 219.CrossRefGoogle Scholar
Sosman, R. B. (1932). “The inversion of cristobalite,” J. Am. Chem. Soc. JACSAT 54, 3015.10.1021/ja01346a510CrossRefGoogle Scholar
Taliaferro, N. L. (1935). “Some properties of opal,” Am. J. Sci. AJSCAP 30, 450474.CrossRefGoogle Scholar
Viti, C. and Gemmi, M. (2006). “Micronanotessiture, cristallinità e composizione di opali naturali e sintetici,” Riassunto dell’Intervento all’85° Congresso SIMP–Fluminimaggiore, (I), 27–30.Google Scholar
Wahl, F. M., Grim, R. E., and Graf, R. B. (1961). “Phase transformations in silica as examined by continuous X-ray diffraction,” Am. Mineral. AMMIAY 46, 196208.Google Scholar
White, D. E., Hutchinson, R. A., and Keith, T. E. C. (1988). “The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming,” U.S. Geological Survey Professional Paper No. 1456, 1–8.CrossRefGoogle Scholar
Wilm, D., Hofmann, U., and Endell, K. (1934). “Über die bedeutung von röntgeninterferenz-untersuchungen bei hohen temperaturen für die keramische forschung,” Sprechsaal Keram.-Glas-Email 38, 18.Google Scholar
Wilson, M. J., Russell, J. D., and Tait, J. M. (1974). “A new interpretation of the structure of disordered α-cristobalite,” Contrib. Mineral. Petrol. CMPEAP 47, 16.CrossRefGoogle Scholar