Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T04:58:55.947Z Has data issue: false hasContentIssue false

Crystal structure and diffraction data for a polymorph of voglibose (C10H21NO7)

Published online by Cambridge University Press:  06 March 2012

G. Q. Zhang*
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
G. L. Lv
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray powder diffraction data of voglibose are reported, and its crystal and molecular structures were determined by simulated annealing and rigid-body Rietveld refinement methods. Voglibose was found to be crystallized in triclinic symmetry with space group P-1. The lattice parameters were determined to be a=6.1974(6) Å, b=6.9918(5) Å, c=7.3955(9) Å, α=70.8628(3), β=103.5312(4), γ=94.3867(5)°, V=294.2(2) Å3, and ρcal=1.495 g/cm3. The crystal structure contains isolated C10H21NO7 molecular.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Byrn, S., Pfeiffer, R., Ganey, M., Hoiberg, C., and Poochikian, G. (1995). “Pharmaceutical solids: A strategic approach to regulatory considerations,” Pharm. Res.PHREEB 12, 945954.10.1023/A:1016241927429CrossRefGoogle ScholarPubMed
Chen, X., Zheng, Y., and Shen, Y. (2006). “Voglibose (Basen, AO-128), one of the most important alpha-glucosidase inhibitors,” Curr. Med. Chem.CMCHE7 13, 109116.10.2174/092986706789803035CrossRefGoogle ScholarPubMed
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: A program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr.JACGAR 39, 910915.10.1107/S0021889806042117CrossRefGoogle Scholar
Giordano, F., Rossi, A., Moyano, J. R., Gazzaniga, A., Massarotti, V., Bini, M., Capsoni, D., Peveri, T., Redenti, E., Carima, L., Dagli Alberi, M., and Zanol, M. (2001). “Polymorphism of rac-5,6-diisobutyryloxy-2-methylamino-1,2,3,4-tetrahydro-naphthalene hydrochloride (CHF 1035). I. Thermal, spectroscopic, and X-ray diffraction properties,” J. Pharm. Sci.JPMSAE 90, 11541163.10.1002/jps.1069CrossRefGoogle ScholarPubMed
Kariuki, B. M., Zin, D. M. S., Tremayne, M., and Harris, K. D. M. (1996). “Crystal structure solution from powder X-ray diffraction data: The development of Monte Carlo methods to solve the crystal structure of the γ phase of 3-chloro-trans-cinnamic acid,” Chem. Mater.CMATEX 8, 565569.10.1021/cm950452oCrossRefGoogle Scholar
Morris, K. R., Schlam, R. F., Chao, W., and Short, M. S. (2000). “Determination of average crystallite shape by X-ray diffraction and computational methods,” J. Pharm. Sci.JPMSAE 89, 14321442.10.1002/1520-6017(200011)89:11<1432::AID-JPS6>3.0.CO;2-X3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Ohtake, H. and Ikegami, S. (2000). “Facile ring transformation from gluconolactone to cyclitol derivative via spiro sugar ortho ester,” Org. Lett.ORLEF7 2, 457460.10.1021/ol9913035CrossRefGoogle ScholarPubMed
Zhang, H., Sun, C. R., Ishurd, O., Pan, Y. J., and Ding, L. S. (2004). “Determination of the structures of four new isomeric cyclitols,” Carbohydr. Res.CRBRAT 339, 20272030.10.1016/j.carres.2004.05.025CrossRefGoogle ScholarPubMed