As device geometries continue to scale down, a larger portion of the circuit delay is contributed by interconnects, and the majority of this delay is due to capacitive loading. The replacement of plasma-deposited SiO2 as an intermetal dielectric with an insulator of lower dielectric constant can provide performance improvement through the reduction of capacitance.
A commercially available polyimide, BiPhenylene DiAnhydride – Phenylene DiAmine, BPDA-PDA, with an out-of-plane dielectric constant 3.0, is evaluated by integration with AI(Cu) in a double level metal, BiCMOS 4MB SRAM device, with 0.5μm groundrules. Process challenges unique to integration of an organic rather than inorganic insulator are described and experimental features concerning process integration, particularly via etch, Al(Cu) deposition, adhesion and moisture management are presented.