We report for the first time the hydrothermal growth of radially aligned ZnO nanorods on electrospun polyamide nanofibers, paving the way to the development of transparent, flexible, portable, solution processable, and low-cost thin-film photovoltaics. Polyamide nanofibers with mean diameters of 100 nm were prepared by electrospinning followed by a two-step hydrothermal growth method for fabricating ZnO nanorods. The loading ratio of ZnO nanorods were found to be 66 wt% by thermogravimetric analysis, significantly higher than the ZnO grown on cotton and nylon fabrics previously. A significant increase of UV absorption was observed. Superhydrophobicity, which is a desirable feature of self-cleaning photovoltaic devices, was achieved using 1-dodecanethiol modification.