Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T02:56:54.518Z Has data issue: false hasContentIssue false

Fabrication and characterization of aluminum nitride sponges using a mixture of two porous formation methods

Published online by Cambridge University Press:  04 November 2019

Rodrigo Alan Martínez Molina*
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigación en Metalurgia y Materiales, Mexico.
José Egberto Bedolla Becerril
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigación en Metalurgia y Materiales, Mexico.
Ena Athenea Aguilar Reyes
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigación en Metalurgia y Materiales, Mexico.
Raul Alejando Pulido Aguilar
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigación en Metalurgia y Materiales, Mexico.
Carlos Arreola Fernandez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigación en Metalurgia y Materiales, Mexico.
*
Get access

Abstract

A method for the fabrication of interconnected ceramic sponges was used in the present work, designed by using a combination of two different, aqueous gel casting and sacrificial template, using aluminum nitride powder (99.97%) with a mean size of 2.4 micrometers. Two types of sponges were made by using two different monomers, acrylamide and methacrylamide, the resultants sponges have 60% of porosity after being sintered and pyrolyzed at temperature of 1673 K using an inert atmosphere of argon for 1 h. The hydrolysis evolution of this ceramic powder during the gelcasting process was studied by measuring the pH during the stirring time, the microstructure changes during the time of exposure were observed in a SEM. XRD were made to study the present phases after the gel was eliminated by thermal treatment at 873 K using an oxidizing atmosphere, observing a formation of up to 4 %wt. of cubic alumina phase which was made after the hydrolysis products. Infrared spectroscopy was used to study the changes in the ceramic powder.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, J., Yu, J., and Huang, Y., J. Eur. Ceram. Soc., vol. 31, no. 14, pp. 25692591, 2011.CrossRefGoogle Scholar
Vakifahmetoglu, C., Zeydanli, D., and Colombo, P., Mater. Sci. Eng. R Reports, vol. 106, pp. 130, 2016.CrossRefGoogle Scholar
Mouazer, R., Thijs, I., Mullens, S., and Luyten, J., Adv. Eng. Mater., vol. 6, no. 5, pp. 340343, 2004.CrossRefGoogle Scholar
Eom, J.-H., Kim, Y.-W., and Raju, S., J. Asian Ceram. Soc., vol. 1, no. 3, pp. 220242, Sep. 2013.CrossRefGoogle Scholar
Ganesh, I., Jana, D. C., Shaik, S., and Thiyagarajan, N., J. Am. Ceram. Soc., vol. 89, no. 10, pp. 30563064, 2006.CrossRefGoogle Scholar
Wong, K. V. and Hernandez, A., ISRN Mech. Eng., vol. 2012, pp. 110, 2012.CrossRefGoogle Scholar
Minas, C., Carnelli, D., Tervoort, E., and Studart, A. R., Adv. Mater., vol. 28, no. 45, pp. 99939999, 2016.CrossRefGoogle Scholar
Weller, C., Kleer, R., and Piller, F. T., Int. J. Prod. Econ., vol. 164, pp. 4356, 2015.CrossRefGoogle Scholar
Vaezi, M., Seitz, H., and Yang, S., Int. J. Adv. Manuf. Technol., vol. 67, no. 5–8, pp. 17211754, 2013.CrossRefGoogle Scholar
Omatete, O. O., Janney, M. A., and Strehlow, R. A., vol. 70, no. 10. American Ceramic Society, 1991.Google Scholar
Gilissen, R., Erauw, J. ., Smolders, a, Vanswijgenhoven, E., and Luyten, J., Mater. Des., vol. 21, no. 4, pp. 251257, 2000.CrossRefGoogle Scholar
Falcon-Franco, L., Rosales, I., García-Villarreal, S., Curiel, F. F. F., and Arizmendi-Morquecho, A., J. Alloys Compd., vol. 663, pp. 407412, 2016.CrossRefGoogle Scholar
Bedolla, E., Ayala, A., Lemus-Ruiz, J., and Contreras, , in Mg 2015, 2015.Google Scholar
Xing, H., Cao, X., Hu, W., Zhao, L., and Zhang, J., Mater. Lett., vol. 59, no. 12, pp. 15631566, May 2005.CrossRefGoogle Scholar
Li, S., Xiong, D., Liu, M., Bai, S., and Zhao, X., Ceram. Int., vol. 40, no. 5, pp. 75397544, 2014.CrossRefGoogle Scholar
Binner, J., Chang, H., and Higginson, R., J. Eur. Ceram. Soc., vol. 29, no. 5, pp. 837842, 2009.CrossRefGoogle Scholar
Fukumoto, S., Hookabe, T., and Tsubakino, H., J. Mater. Sci., vol. 35, no. 11, pp. 27432748, 2000.CrossRefGoogle Scholar
Kocjan, A., Dakskobler, A., Krnel, K., and Kosmač, T., J. Eur. Ceram. Soc., vol. 31, no. 5, pp. 815823, 2011.CrossRefGoogle Scholar
Wang, E., Chen, J., Hu, X., Chou, K. C., and Hou, X., Ceram. Int., vol. 42, no. 9, pp. 1142911434, 2016.CrossRefGoogle Scholar
Socrates, G., Infrared and Raman characteristic group frequencies. 2004.Google Scholar
Betke, U., Lieb, A., Scheffler, F., and Scheffler, M., Adv. Eng. Mater., vol. 19, no. 3, pp. 18, 2017.Google Scholar
Kosmac, T., Novak, S., and Sajko, M., J. Eur. Ceram. Soc., vol. 17, no. 2–3, pp. 427432, 1997.CrossRefGoogle Scholar
Shen, L., Xu, X., Lu, W., and Shi, B., Ceram. Int., vol. 42, no. 4, pp. 55695574, 2016.CrossRefGoogle Scholar
Colombo, P., Mera, G., Riedel, R., and Sorarù, G. D., J. Am. Ceram. Soc., vol. 93, no. 7, pp. 18051837, 2010.Google Scholar
Song, Y., Li, B., Yang, S., Ding, G., Zhang, C., and Xie, X., Sci. Rep., vol. 5, p. 10337, 2015.CrossRefGoogle Scholar