Characteristics of the interfacial region between a polymer and substrate are critical to the durability of adhesive-adherend system performance. The High Speed Civil Transport (HSCT) requires structural laminates to be light weight, non-corrosive, environmentally safe, and able to withstand extreme service conditions (Mach 2.4 with in-service temperatures at 177°C, projected life to 120,000 hours). The present work characterizes multi-layer laminates comprised of a Titanium substrate (6A1-4V and 15V-3Cr-3Al-3Sn alloy), a silicate/zirconate sol-gel coating with aminopropyl functionality (nominally 1000 Angstroms), a NASA developed PETI-5 psuedothermoplastic polyimide primer (nominally 1000 Angstroms), and a high toughness, thermo-oxide stable PETI-5 adhesive. Previous studies report the physical effect of aging; therefore, this work aims to measure the nano-mechanical properties of the interface utilizing nano-indentation and AFM, focusing on the accelerated time-dependent changes due to extreme environmental exposure.
Samples were prepared by sectioning each laminate (No Environmental Exposure, 1000 and 2000 Hours at 200°C) in two locations, one section externally exposed to environmental test conditions and the other from the middle of the laminate.